Abstract:
The invention comprises a method for lossy data compression, akin to vector quantization, in which there is no explicit codebook and no search, i.e. the codebook memory and associated search computation are eliminated. Some memory and computation are still required, but these are dramatically reduced, compared to systems that do not exploit this method. For this reason, both the memory and computation requirements of the method are exponentially smaller than comparable methods that do not exploit the invention. Because there is no explicit codebook to be stored or searched, no such codebook need be generated either. This makes the method well suited to adaptive coding schemes, where the compression system adapts to the statistics of the data presented for processing: both the complexity of the algorithm executed for adaptation, and the amount of data transmitted to synchronize the sender and receiver, are exponentially smaller than comparable existing methods.
Abstract:
The disclosed embodiments include a computer implemented method to control the presentation of an audio video stream. The method includes obtaining an audio video stream and associating the audio video stream with events. The events include an interpretation of content of the audio video stream. The method further includes obtaining a natural language command, generating a control signal based on the natural language command by referencing a particular event, and using the control signal to control presentation of the audio video stream relative to the particular event.
Abstract:
Various embodiments contemplate systems and methods for performing automatic speech recognition (ASR) and natural language understanding (NLU) that enable high accuracy recognition and understanding of freely spoken utterances which may contain proper names and similar entities. The proper name entities may contain or be comprised wholly of words that are not present in the vocabularies of these systems as normally constituted. Recognition of the other words in the utterances in question, e.g. words that are not part of the proper name entities, may occur at regular, high recognition accuracy. Various embodiments provide as output not only accurately transcribed running text of the complete utterance, but also a symbolic representation of the meaning of the input, including appropriate symbolic representations of proper name entities, adequate to allow a computer system to respond appropriately to the spoken request without further analysis of the user's input.
Abstract:
The disclosed embodiments include a computer implemented method to control the presentation of an audio video stream. The method includes obtaining an audio video stream and associating the audio video stream with events. The events include an interpretation of content of the audio video stream. The method further includes obtaining a natural language command, generating a control signal based on the natural language command by referencing a particular event, and using the control signal to control presentation of the audio video stream relative to the particular event.
Abstract:
Efficient empirical determination, computation, and use of an acoustic confusability measure comprises: (1) an empirically derived acoustic confusability measure, comprising a means for determining the acoustic confusability between any two textual phrases in a given language, where the measure of acoustic confusability is empirically derived from examples of the application of a specific speech recognition technology, where the procedure does not require access to the internal computational models of the speech recognition technology, and does not depend upon any particular internal structure or modeling technique, and where the procedure is based upon iterative improvement from an initial estimate; (2) techniques for efficient computation of empirically derived acoustic confusability measure, comprising means for efficient application of an acoustic confusability score, allowing practical application to very large-scale problems; and (3) a method for using acoustic confusability measures to make principled choices about which specific phrases to make recognizable by a speech recognition application.
Abstract:
A global speech user interface (GSUI) comprises an input system to receive a user's spoken command, a feedback system along with a set of feedback overlays to give the user information on the progress of his spoken requests, a set of visual cues on the television screen to help the user understand what he can say, a help system, and a model for navigation among applications. The interface is extensible to make it easy to add new applications.
Abstract:
Various embodiments contemplate systems and methods for performing automatic speech recognition (ASR) and natural language understanding (NLU) that enable high accuracy recognition and understanding of freely spoken utterances which may contain proper names and similar entities. The proper name entities may contain or be comprised wholly of words that are not present in the vocabularies of these systems as normally constituted. Recognition of the other words in the utterances in question, e.g. words that are not part of the proper name entities, may occur at regular, high recognition accuracy. Various embodiments provide as output not only accurately transcribed running text of the complete utterance, but also a symbolic representation of the meaning of the input, including appropriate symbolic representations of proper name entities, adequate to allow a computer system to respond appropriately to the spoken request without further analysis of the user's input.
Abstract:
Efficient empirical determination, computation, and use of an acoustic confusability measure comprises: (1) an empirically derived acoustic confusability measure, comprising a means for determining the acoustic confusability between any two textual phrases in a given language, where the measure of acoustic confusability is empirically derived from examples of the application of a specific speech recognition technology, where the procedure does not require access to the internal computational models of the speech recognition technology, and does not depend upon any particular internal structure or modeling technique, and where the procedure is based upon iterative improvement from an initial estimate; (2) techniques for efficient computation of empirically derived acoustic confusability measure, comprising means for efficient application of an acoustic confusability score, allowing practical application to very large-scale problems; and (3) a method for using acoustic confusability measures to make principled choices about which specific phrases to make recognizable by a speech recognition application.
Abstract:
A global speech user interface (GSUI) comprises an input system to receive a user's spoken command, a feedback system along with a set of feedback overlays to give the user information on the progress of his spoken requests, a set of visual cues on the television screen to help the user understand what he can say, a help system, and a model for navigation among applications. The interface is extensible to make it easy to add new applications.
Abstract:
A method and apparatus to identify names, personalities, titles, and topics that are present in a repository and to identify names, personalities, titles, and topics that are not present in the repository, uses information from external data sources, notably the text used in non-speech, text-based searches, to expand the search terms. The expansion takes place in two forms: (1) finding plausible linguistic variants of existing search terms that are already comprehended in the repository, but that are present under slightly different names; and (2) expanding the existing search term list with items that should be there by virtue of their currency in popular culture, but which for whatever reason have not yet been reflected with content items in the repository.