Abstract:
The invention discloses a method of amplifying an optical signal, in particular a data signal, transmitted from a first location (A) to a second location (B) via a first transmission link (10a), wherein said optical signal is amplified by means of a transmitter side remote optically pumped amplifiers (ROPA) (18) comprising a gain medium (24), wherein the gain medium (24) of said transmitter side ROPA (18) is pumped by means of transmitter side pump power (20) provided from said first location (A), characterized in that at least a part of said transmitter side pump power (20) is provided by means of light supplied from said first location (A) to said transmitter side ROPA (18) via a portion of a second transmission link (10b) provided for transmitting optical signals from said second location (B) to said first location (A).
Abstract:
The disclosed apparatus, system and method of the present invention provides improved solutions related to the interconnection of communication cable connectors and communication port receptacles, and more generally, for improved handling and management of communication cable connectors and communication ports. Certain example embodiments suitable for an optical communication application, for example, provide for improved laser safety at the location of an optical communication connector and/or an optical communication port. Moreover, certain example embodiments of the present invention additionally or alternatively otherwise provide for improved communication port, module, device, and/or system handling, administration and/or other management.
Abstract:
A phase modulation device is provided that comprises a retardation device and a control device. The retardation device is characterized by first and second polarization eigenstates SOPf and SOPs. Light polarized according to the second polarization eigenstate SOPs acquires, upon passing through said retardation device, a delay with regard to light polarized according to the first polarization eigenstate SOPf, which delay corresponds to λ/2±30%, preferably λ/2±20% and most preferably λ/2±10%. The retardation device is arranged to receive input light having a polarization state SOPf; that defines an angle with respect to one of the first and second polarization eigenstates SOPf, SOPs within a predetermined angle range and to emit output light. The control device is configured to control at least one of a change of the angle between the polarization state SOPi; of the input light and the respective polarization eigenstate SOPf, SOPs by less than 0.1*π, preferably less than 0.05*π and most preferably less than 0.02*π; and a change of the amount of said delay upon passing through said retardation device by less than 0.3*λ, preferably less than 0.2*λ and most preferably less than 0.1*λ, such that a phase shift of π±30%, preferably π±20% and most preferably π±10% on the output light is obtained.
Abstract:
The present invention relates to an optical network element (30, 34) comprising a wavelength selective switch, WSS, (432, 136) with one or more input ports, a working output port (38) and a separate protecting output port (40), the WSS (432) being configurable to a working configuration, in which one or more channels are routed from said one or more input ports to the working output port (38), and being configurable to a protecting configuration, in which said one or more channels or a subset thereof are routed from said one or more input ports to the protecting output port (40), or with a working input port (42) and a protecting input port (44) and with one or more output ports, the WSS (136) being configurable to a working configuration, in which one or more channels are routed from the working input (42) port to the one or more output ports, and being configurable to a protecting configuration, in which one or more channels are routed from the protecting input port (44) to the one or more output ports, a computer readable medium including program code defining configuration information, a control unit configured to control the WSS (432, 136) to adopt the working configuration or the protecting configuration based on the predefined configuration information.
Abstract:
A method for determining the position of an irregularity in an optical transmission fiber using an optical time domain reflectometer, the method comprising the steps of emitting a succession of sampling light pulses into the optical transmission fiber, detecting reflected light pulses resulting from the reflection of the sampling light pulses at the irregularity in the optical transmission fiber and generating corresponding time-dependent detection signals, wherein different delays are associated with detection signals corresponding to different sampling light pulses, obtaining a combined signal from the detection signals, and analyzing the combined signal for determining the position of the irregularity in the optical transmission fiber with respect to the optical time domain reflectometer, wherein the combined signal corresponds to a super-position of the detection signals.
Abstract:
Enclosed herewith is a method for protecting a link in an optical network configured for transmitting digital data employing a predetermined modulation format which comprises a number of symbols in a constellation diagram. A binary address is associated with each symbol. The modulation format allows for a constellation distortion, according to which the relative positions of constellation points in the constellation diagram are varied in a predetermined way by a predetermined degree. The method comprises the steps of: A) partitioning the traffic in two or more priority classes, B) mapping higher priority traffic to predefined bit positions within the binary symbol addresses, C) evaluating the quality of a predetermined protection link, D) determining a degree of distortion such that a desired transmission quality for the transmission of the traffic of the highest priority class or classes via said predetermined protection link and a desired transmission quality for the full traffic via said given link are simultaneously ensured, and E) employing said distorted constellation diagram for transmission of digital data over said given link.
Abstract:
A method for data processing in an optical network component includes filtering and optically equalizing an incoming optical signal and modulating the optically equalized signal. A corresponding optical network component is also provided.
Abstract:
Method and device for processing a communication network A method and a device for processing a communication network are provided, wherein (a) a first performance parameter of the communication network is determined; (b) a third performance parameter is determined based on the first performance parameter and a second performance parameter, which second performance parameter was previously determined, wherein the second performance parameter comprises a forecast of an expected network performance over time until the end of the scheduled lifetime of the communication network; and (c) the communication network is processed based on the third performance parameter. Furthermore, an according computer program product is suggested.
Abstract:
An optical network unit has a tunable laser. The tunable laser is tunable such that a point-to-point connection to another optical network unit is established via an optical fiber. There is also provided a method for processing data in an optical network and a corresponding communication system. The tunable laser can be adjusted based on a detected collision, and a frequency grid can be supplied from a centralized component.
Abstract:
The present invention provides an apparatus, in particular an optical network unit, which comprises a first part operably coupled to an arm of an optical fiber network, the first part comprises an optical module including an optical-electric interface and/or an electric-optical interface locked on a preset wavelength band, and an interface module, and at least one second part operably coupled to a network entity of a communication network, each comprising a control unit, a signal processing unit and an interface module. One of the control units of the at least one second part is set by a optical line terminal of the optical fiber network as a master control unit configured to tune and control the optical module of the first part. The first part and the at least one second part are wireless coupled with respect to each other via the interface modules.