Abstract:
Placement apparatus and methods of use for impanation of spacers within an inter-vertebral disc space. In one embodiment, the load-bearing superstructure of the implant is subdivided and the bone forming material is positioned within an internal space of the placement instrument but external to the load bearing elements themselves. At least a portion of the bone graft material is freely contained within the disc space. A method of using the device is also described. In one embodiment, the placement device is used to place the implantable spacers at opposing ends of the disc space using a directly lateral surgical approach.
Abstract:
A spinal implant apparatus that is an expandable spacer including features to minimize or eliminate spacer cant or offset during and after completing the expansion process. The spacer includes a top component, a base component in engagement with the top component, and an expansion mechanism arranged to change the top component's position with respect to the base component. The mechanism for causing expansion may be a screw, a cam, a wedge or other form of distracting device. In one embodiment, the expandable spacer includes a base component with a set of towers and a top component with a set of corresponding silos, where the towers and silos are configured to minimize or eliminate tilt of the top component as it extends upwardly from the base component. In another embodiment, the spacer may include a stepped arrangement around the perimeter of the top component and the base component for engagement during height expansion with minimal canting or slippage. In another embodiment, the spacer may include texturing modification at the opposite ends of the longitudinal axis of the spacer to prevent tilting, slipping, or canting. Additionally, a portion of one or more exterior surfaces of the spacer may be textured, sawtoothed, dovetailed or the like to increase frictional intervertebral contact. The spacer may contain one or more passageways of selectable shape/dimension for bone growth through the spacer.
Abstract:
An expandable cage (1) for maintaining a distance between two vertebras on a spine and providing fusion is disclosed. The expandable cage (1) comprises a horizontal axis, a front part with an upper arm (1.1), a lower arm (1.2), and shaft fixation sockets (1.7.1 and 1.7.2) located between the arms (1.1 and 1.2), and a hollow shaft (2) with graft holes (2.4). The shaft (2) is placed parallel to the horizontal axis and partially inside the shaft fixation sockets (1.7.1 and 1.7.2). The cage (1) is expanded vertically by rotating the shaft (2) 90 degrees with an instrument, thus further separating vertically the upper arm (1.1) and the lower arm (1.2).
Abstract:
An implant that includes a body and a plurality of arched bone contacting elements is disclosed. The body includes a peripheral structure and three support beams extending in a central region of the peripheral structure. Arched bone contacting elements extend between adjacent beams and between beams and the peripheral structure. The arched bone contacting elements include flared legs. The arched bone contacting elements may be arranged in V-like configurations on the superior and inferior sides.
Abstract:
An endoprosthetic device for replacement of a diseased or damaged scapular glenoid fossa. The device includes a glenosphere or a glenosocket member, or provides the option of mating a glenosphere or glenosocket member via a Morse taper. The device also features opposing fixation plates that grip resected scapular area anteroposteriorly to fixate the device through use of a plurality of setscrews. An Oblique setscrew that engages the scapular body inferiorly may be added for improved fixation. A porous mesh surface treatment on the inner faces of the fixation plates may be utilized to improve osteoconductivity.
Abstract:
A spinal fusion device is disclosed. The spinal fusion device includes a first endplate configured for fitting within a disc space and engaging with a first vertebra and a second endplate configured for fitting within the disc space and engaging with a second vertebra. The two endplates are separated by a single spacer that is positioned between the first endplate and the second endplate and maintains a pre-determined distance between the first endplate and the second endplate. The spacer contains an anterior end, a posterior end, a first lateral side, a second lateral side opposite to the first lateral side, a first surface that engages with the first endplate, a second surface that engages with the second endplate. Also disclosed are methods and instruments for implanting the spinal fusion device.
Abstract:
An apparatus and method for locating the position of a spinal implant in an intradiscal space patient during surgery, comprising a spinal implant formed of radiolucent material and a releasably attached inserter comprising a positioning element including thereon a marker of material more radiopaque than the material of the spinal implant. The positioning element extends into the implant such that the marker is positioned at a predetermined location within the implant, the positioning element with the radiopaque maker being removable from the spinal implant after insertion. In a particular method of locating the position of the spinal implant, the spinal implant is inserted from the lateral approach.
Abstract:
A spinal fusion system and related methods involve the use of a spinal fusion implant of non-bone construction. The spinal fusion implant is particularly suited for introduction into the disc space via a lateral approach to the spine.
Abstract:
Disclosed is an intervertebral fusion cage which may be inserted between vertebrae from which a disk is removed to restore and maintain an interval between two vertebrae, and more specifically, to an intervertebral fusion cage having an easily mountable shape while enlarging a contact area with blood in a spinal cavity during surgery. A intervertebral fusion cage 100 generally includes a front part 102, first and second side parts 106 and 108 connected to both ends of the front part 102, and a rear part 104 connected to the pair of first and second side parts 106 and 108, wherein the front part 102, the first and second side parts 106 and 108 and the rear part 104 define fixing holes 130 and 132 therein which are vertically opened.
Abstract:
A spinal implant for stabilizing first and second vertebrae. The spinal implant includes an intervertebral spacer and a bone stabilization member configured to be coupled to the intervertebral spacer. The bone stabilization member includes a plurality of bone screw openings and a plurality of bone screws extendable through the bone screw openings to secure the bone stabilization member to the vertebrae. A retention member, which is slidably coupled to the bone stabilization member, is linearly slidable between a first position and a second position while coupled to the bone stabilization member. In the first position, each of the bone screws is permitted to be inserted into the bone screw openings, and in the second position the retention member at least partially covers each of the bone screw openings to prevent a bone screw from backing out of the respective bone screw opening.