Interlaminar Fixation Device
    3.
    发明申请

    公开(公告)号:US20190201216A1

    公开(公告)日:2019-07-04

    申请号:US16038000

    申请日:2018-07-17

    Inventor: Donald Mackenzie

    Abstract: An interlaminar fixation device (“ILFD”) and related tools for implanting and extracting the ILFD in surgical procedures to provide support for patients having degenerative spinal conditions. The ILFD comprises an implant body, a pair of fixation pin assemblies, and a locking plug. The body may be a boxlike structure made of a material such as polyetheretherketone (PEEK) or other material with similar beneficial properties. An implant-sizing tool is provided for determining the appropriately sized ILFD. An implant-grasper tool is provided for grasping the ILFD for insertion and positioning of the ILFD. A bone-punch tool is provided for creating openings aligned for insertion of fixation pins. A pin-inserter tool is provided for urging fixation pins into position. A locking-plug inserter tool is provided for inserting the locking plug into the body of the ILFD. A locking-plug extractor tool is provided for removing the locking plug.

    BONE PRESERVING INTRAOPERATIVE DOWNSIZING SYSTEM FOR ORTHOPAEDIC IMPLANTS

    公开(公告)号:US20190091039A1

    公开(公告)日:2019-03-28

    申请号:US16202726

    申请日:2018-11-28

    Applicant: Zimmer, Inc.

    Abstract: An orthopaedic implant system includes a set of provisional orthopaedic implants having different implant sizes, in which each provisional implant facilitates an in selection of the next-smallest implant size without removing the provisional implant from the bone. All of the implant sizes share a common sagittal configuration of distal and anterior bone contacting surfaces, but have variable sagittal configurations only in the posterior bone contacting surfaces. Thus, where a relatively larger femoral provisional component is mounted to a femur, changing to a smaller provisional component (i.e., “downsizing”) can be accomplished by recutting only two of live original femoral cuts. Cut slots provided in each provisional implant are sized and positioned to correspond to the posterior bone contacting surface geometry of the next-smallest provisional implant size. Thus, the cut slots in a mounted, relatively larger implant can be used to further resect posterior femoral surfaces to accept the next smallest implant component size.

    FEMORAL PROSTHESIS WITH LATERALIZED PATELLAR GROOVE

    公开(公告)号:US20180092746A1

    公开(公告)日:2018-04-05

    申请号:US15835144

    申请日:2017-12-07

    Applicant: ZIMMER GMBH

    Abstract: A prosthetic femoral component (10) for an orthopaedic prosthesis has a canted patellar groove adapted for optimal patella/component interaction, with the component configured to have a medial or lateral cant depending upon the method of implantation. The femoral component defines a distal “component transverse plane,” which is a plane tangent to the distal-most points of the component condyles (12, 14). In a “mechanical” implantation, the component transverse plane is substantially normal to the mechanical femoral axis of the femur after the component has been implanted. Where the femoral component is configured to be “mechanically oriented” in this manner, the component has a medially canted patellar groove. On the other hand, an “anatomic” implantation is one in which, after the component has been implanted, the component transverse plane is substantially parallel to an “anatomic” transverse plane. The anatomic transverse plane is perpendicular to the anatomic axis of the femur from a sagittal view, and is inclusive of a line connecting the distal-most points of the natural femoral condyles before resection. Where the femoral component is configured to be “anatomically oriented” in this way, the component has a non-canted or slightly laterally canted patellar groove.

Patent Agency Ranking