摘要:
A mobile, wave motion-isolated, waterborne device having a platform with a plurality of support members extending beneath the platform configured to receive an articulated joint. The device further includes a plurality of corresponding clusters of spar buoys, wherein each spar buoy has an articulated joint at a first end of the spar buoy and a ballast operably configured at the second end. The articulated joint of each spar buoy within the cluster corresponds to a swivel footing configured to receive an articulated joint. The swivel footing itself includes an articulating joint. Each articulated joint of the swivel footing corresponds to one of the support members of the platform. The cluster of spar buoys can optionally move between a vertical orientation and a horizontal orientation. An optional movable ballast may be used in place of a stationary ballast. The invention also includes optional thrust/propulsion, steering, and damping features.
摘要:
A mobile, wave motion-isolated, waterborne device having a platform with a plurality of support members extending beneath the platform configured to receive an articulated joint. The device further includes a plurality of corresponding clusters of spar buoys, wherein each spar buoy has an articulated joint at a first end of the spar buoy and a ballast operably configured at the second end. The articulated joint of each spar buoy within the cluster corresponds to a swivel footing configured to receive an articulated joint. The swivel footing itself includes an articulating joint. Each articulated joint of the swivel footing corresponds to one of the support members of the platform. The cluster of spar buoys can optionally move between a vertical orientation and a horizontal orientation. An optional movable ballast may be used in place of a stationary ballast. The invention also includes optional thrust/propulsion, steering, and damping features.
摘要:
In a spar-type floating structure comprising a tall, thin floating body 2 and a ballast portion 3 provided to the floating body 2 so that the weight of the ballast portion 3 allows the floating body 2 to float in upright position, the floating body 2 includes a horizontally-extending first extended portion 21 arranged at the bottom, a horizontally-extending second extended portion 22 arranged in the middle, and a column portion connecting the first and second extended portions 21, 22 and extending up to the waterline, the first extended portion 21 forms the ballast portion 3, and the second extended portion 22 constitutes a buoyancy portion giving buoyancy to the floating body 2.
摘要:
A wind turbine platform is configured for floating in a body of water and includes a hull defining a hull cavity therein. The hull is formed from reinforced concrete. A tower is configured to mount a wind turbine and is also connected to the hull. An anchor member is connected to the hull and to the seabed.
摘要:
A spar hull for a floating vessel can include a hard tank having a belly portion, a fixed strake coupled to the outer surface of the tank and a folding strake coupled to the belly portion of the tank, the folding strake having one or more strake panels and one or more support frames. A method for installing folding belly strakes on a spar hull may include providing a floating spar hull having a hard tank with a belly side, rotating the spar so that the belly side is in a first workable position, coupling at least one folding strake to the belly side of the spar, and coupling the strake in a folded position for transport. The method may include positioning the spar hull offshore in a transport position, upending the spar hull, unfolding the strake, fixing the strake in the unfolded position and installing the spar hull.
摘要:
A submerged or partially submerged structure includes one or more non-cylindrical support columns interconnected at the lower ends thereof by horizontally disposed pontoons. The support columns include one or more strakes mounted thereon. The columns and strakes contribute to the stability of the structure during free floating operations and installation by reducing vortex induced motion.
摘要:
Provided is an offshore wind turbine generator capable of withstanding unevenly distributed stress with a simple and inexpensive structure and of maintaining reliability in terms of strength. An offshore wind turbine generator includes a nacelle that rotatably supports a rotor head, and a tower portion that supports the nacelle and yaws integrally with the nacelle, and a structure portion that bears the strength of the tower portion has a higher strength against a load in a direction included in a plane having a rotation axis of the rotor head and an extending direction of the tower portion than the strength of the structure portion against a load in a direction included in other planes including the extending direction of the tower portion.
摘要:
An offshore floating production, storage, and off-loading vessel has a hull of generally cylindrical or polygonal configuration surrounding a central double tapered conical moon pool and contains water ballast and oil and/or liquefied gas storage compartments. The exterior side walls of the polygonal hull have flat surfaces and sharp corners to cut ice sheets, resist and break ice, and move ice pressure ridges away from the structure. An adjustable water ballast system induces heave, roll, pitch and surge motions of the vessel to dynamically position and maneuver the vessel to accomplish ice cutting, breaking and moving operations. The moon pool shape and other devices on the vessel provide added virtual mass for increasing the natural period of the roll and heave modes, reducing dynamic amplification and resonance due to waves and vessel motion, and facilitate maneuvering the vessel. A disconnectable turret buoy at the bottom of the moon pool connects risers and mooring lines.
摘要:
The present invention relates to devices and methods for using weights and cables for stabilizing turbines in water by attaching them to the ocean floor.
摘要:
Minimized Wave-zone Buoyancy is a new approach to oil and gas platform design with superior construction and performance characteristics compared to state-of-art off-shore drilling and production platforms. Minimized Wave-zone Buoyancy platforms capitalize on low cross sectional area of the portion of the platform exposed to waves. The low cross sectional area reduces buoyancy forces that result from vertical platform movement, enabling the platform to oscillate at a low natural frequency. The low cross sectional area also minimizes the cyclical vertical forces induced by waves. Compare to current designs, application of the Minimized Wave-zone Buoyancy concept will result in a lower natural frequency of oscillation, lower overall weight of platform, or both. Minimized Wave-zone Buoyancy offers an attractive alternative with improved platform stability, fatigue considerations, lower construction and installation costs, and shorter implementation schedule.