Abstract:
A personal electro-kinetic electrostatic air conditioner includes a self-contained ion generator that provides electro-kinetically moved air with ions and safe amounts of ozone, and includes a water retaining element to increase humidity of the output air flow. The ion generator includes a high voltage pulse generator whose output pulses are coupled between first and second electrode arrays. Preferably the first electrode array includes first and second pointed electrodes, and the second electrode array includes annular-like electrodes having a central opening coaxial with the associated pointed electrode. The surface of the annular-like electrodes is smooth and continuous through the opening and into a collar region through which the air flows. A water retaining member is disposed surrounding the output airflow to increase humidity of the output air, which is substantially cleansed of particulate matter, and contains safe amounts of ozone.
Abstract:
Corona discharge cells for the production of ozone are respectively constructed of inner electrodes fabricated from metal bar, a dielectric sleeve and outer electrodes. Spacers and/or sealing rings isolate a corona discharge producing region from ambient conditions. The surfaces of the inner electrodes can be roughed to enhance ozone production within the corona discharge producing region.
Abstract:
An electro-kinetic air conditioner for removing particulates from the air creates an airflow using no moving parts. The airflow is subjected to UV radiation from a germicidal lamp within the device. The conditioner includes an ion generator that has an electrode assembly including a first array of emitter electrodes, a second array of collector electrodes, and a high voltage generator. The device can also include a third or leading or focus electrode located upstream of the first array of emitter electrodes, and/or a trailing electrode located downstream of the second array of collector electrodes, and/or an interstitial electrode located between collector electrodes, and/or an enhanced emitter electrode with an enhanced length in order to increase emissivity.
Abstract:
A process and reactor for chemical conversion is taught. The process allows the selective breaking of chemical bonds in a molecule by use of fast rise alternating current or fast rise pulsed direct current, each fast rise portion being selected to have a suitable voltage and frequency to break a selected chemical bond in a molecule. The reactor for carrying out such a process includes a chamber for containing the molecule and a generator for generating and applying the selected fast rise current.
Abstract:
The invention relates to an ozone generator, comprising a dielectric member having first and second faces, a first electrode provided on the first face of said member, and a second electrode provided on the second face of said member. The first electrode can be an electrically conductive plate, having a first and a second face. It is provided with at least one elongated recess in said first face. The first face is in contact with said first face of said dielectric member, such that said recessse(s) and said dielectric member define channels in cooperation with said dielectric plate.
Abstract:
A fluid dynamic ozone generator includes a coaxial gas-fluid mixing tube, an air-cooled ozone formation tube, and a liquid-pressurized gas-liquid mixer. The air-cooled ozone formation tube has an electric discharge region for inducing and sustaining micro-discharges. An oxygen-containing gas flowing through the region is capable of forming ozone. The air-cooled ozone formation tube is installed within the coaxial gas-fluid mixing tube. The liquid-pressurized gas-liquid mixer has an airtight container with an inlet pipe for gas-contained water. Undissolved gas leaves the water and, with the addition of water pressure, builds a positive pressure in the container. The positive pressure helps to dissolve the gas in the water.
Abstract:
A household apparatus for treating water has a water treatment reactor; a dispense water path extending from the water treatment reactor to a dispenser whereby treated water produced in the water treatment reactor exits the apparatus by the dispenser; a filter removably mounted in the dispense water path; and, a sensor, (which may be a timer, a flow rate sensor and/or a back pressure sensor) for monitoring the flow of a treated water through the filter, the apparatus issuing a signal advising a user to change the filter when the time for the treated water to flow through the filter exceeds a predetermined value.
Abstract:
An electro-kinetic air transporter-conditioner creates airflow with an electrode assembly that includes a first array of electrodes and a second array of electrodes. The innermost electrodes of the second array are preferably located further away from the first array than the outermost electrodes in the second array. This non-equidistant configuration equalizes the electrical fields created at the tip of each electrode within the second array. Reducing the electrical field at the innermost electrodes also reduces the amount of ozone generated by the device.
Abstract:
A system massages a user's feet and generates an electro-kinetic airflow that contains safe amounts of ozone that can deodorize the user's feet or socks. The system includes an ion generator comprising a high voltage pulse generator whose output pulses are coupled between left and right first and second electrode arrays. Preferably the first electrode array includes first and second pointed electrodes, and the second electrode array includes annular-like electrodes having a central opening coaxial with the associated pointed electrode. Preferably the annular-like electrodes are formed from a single sheet of metal by extrusion or punching such that the surface of the annular-like electrodes is smooth and continuous through the opening and into a collar region through which the air flows. Particulate matter in the ambient air electrostatically adheres to the smooth continuous surface of the annular-like electrodes.
Abstract:
An electro-kinetic air conditioner for removing particulates from the air creates an airflow using no moving parts. The conditioner includes an ion generator that has an electrode assembly including a first array of emitter electrodes, a second array of collector electrodes, and a high voltage generator. Preferably, a third or leading or focus electrode is located upstream of the first array of emitter electrodes, and/or a trailing electrode is located downstream of the second array of collector electrodes. The device can also include an interstitial electrode located between collector electrodes, an enhanced collector electrode with an integrally formed trailing end, and an enhanced emitter electrode with an enhanced length in order to increase emissivity.