Abstract:
A bundle of individual channel multipliers stacked to form a multiplier array, the individual channels being fabricated of a lower temperature softening glass and the bundle being inserted into a higher temperature softening glass tube, the walls of the individual channels being expanded to fill the interstices within the higher softening temperature tube.
Abstract:
The invention herein described was made in the course of or under a contract or subcontract thereunder with the Department of the Army. An illustrative embodiment of the invention is directed to method and apparatus for manufacturing microchannel devices. Typically, individual glass tubes are suspended vertically in a furnace. A vacuum is drawn within the furnace so that the inner surfaces of the tubes, exposed to atmospheric pressure, will not collapse during heating and drawing. At temperature, the bundle is drawn in order to elongate and reduce the bundle cross section by a ratio of about 50 to 1. The elongated bundle is cut into lengths that are stacked together within a tube of glass that has a higher melting point than the glass in the drawn lengths. The channels are once more sealed and the adjacent hexagonal lengths are subjected to a secondary fusion process prior to slicing into thin discs. To prevent the inner lengths from cracking during cooling, the inner surface of the tube is treated with a fusion inhibiting compound (e.g., boron nitride).
Abstract:
Provided is a system for and a method of processing an optical fiber, such as tapering an optical fiber. The method includes receiving fiber parameters defining characteristics of an optical fiber, modeling an idealized fiber based on the fiber parameters to establish modeled data, and establishing processing parameters. A processing operation is performed on the optical fiber according to the processing parameters to produce a resultant fiber. Aspects of the resultant fiber are measured to establish measured data. The measured data and the modeled data are normalized to a common axis and a difference between the two is determined. The processing parameters are adjusted based on the differences.
Abstract:
An optical fiber bundle structure includes: a plurality of optical fiber core wires; and a capillary, wherein each of the optical fiber core wires includes a glass fiber portion including a core and a clad, and a resin coated portion, the glass fiber portions are inserted in the capillary, and d2/d1 is equal to or larger than 0.57 and smaller than 1, where d1 is a diameter of the core of each of the glass fiber portions in a rear end portion of the capillary and d2 is a diameter of the core of each of the glass fiber portions in a distal end portion of the capillary.