摘要:
Methyl silicone resins are pyrolized in a non-oxidizing atmosphere to form a translucent glass comprised of silicon, oxygen and carbon where silicon atoms are chemically bonded to carbon and oxygen atoms, but there are essentially no chemical bonds between carbon and oxygen atoms. The translucent silicon-oxy-carbide glasses of this invention resist devitrification and decomposition in oxidizing or reducing atmospheres at temperatures of about 1250.degree. C. or greater. Methods for forming silicon-oxy-carbide glass articles are disclosed, along with specific methods for forming silicon-oxy-carbide glass fibres, composites, and cellular structures.
摘要:
This invention provides for a porous dielectric composition comprising at least one crystallized glass, at least one non-crystallized glass, and at least one Group IIA metal silicate, the porosity of said composition ranging from about 2% to about 50% by volume open space, the average diameter of the pore spaces in said composition ranging from about 1 to about 30 micrometers. The invention also provides for dielectric pastes and dieletric tapes for providing these dielectric compositions. The invention also provides for a process for making these dielectric compositions. These dielectric compositions are useful in making multilayered circuits, thick film circuits and other electronic components.
摘要:
A composite suitable for use as dental composite is provided by a glass material having a softening range of at least 10.degree. C. and having a particle size of less than 250 mesh to provide a precursor mix. The precursor mix is mixed with a fugitive pore forming material and a binder to form a pressable mix. The pressable mix is pressed at a pressure in excess of 5,000 pounds per square inch to form a sinterable mix. The sinterable mix is sintered for a period of time sufficient to remove said fugitive pore forming material and to form a sintered mass for crushing to form particles of less than 250 micrometers in size to be incorporated into a dental composite.
摘要:
A process for manufacturing open porous sintered bodies with large open pore volume and defined pore diameters and which at least predominantly consist of glass-ceramics. They are obtained by sintering a mixture of sinterable powder and an inorganic soluble salt with defined grade of grain, the melting point of which is above the densification temperature of the sinterable powder. For the formation of a molded body the mixture of sinterable powder and inorganic salt is submitted to a molding process. The molded body is sintered in a sintering process and the soluble salt being contained in the molded body is lixiviated. As a main constituent the sinterable powder contains a pulverized crystallizable glass powder. The sintering process is performed in such a way that the crystal phases being produced during the crystallization of the crystallizable glass, and therefore the material properties, too, are controlled by the guidance of the sintering process as well as by the ion exchange taking place between the sinterable powder and the inorganic salt and which is controlled by their composition. Afterwards, the sintered body is transformed to the final glass-ceramic texture.
摘要:
New type porous cordierite ceramics having a new characteristic interconnecting open cellular structure and a hollow microspherical cordierite glass powder with a shell devoid of any pores or provided with a few or an abundance of open pores which is used as a starting material for the porous cordierite ceramics. The porous cordierite ceramics are produced by subjecting a starting solution containing an alkyl silicate, an aluminum salt and an magnesium salt optionally with other compounds in an organic or aqueous organic solvent to spray thermal decomposition to prepare the hollow microspherical cordierite glass powder, and then processing the cordierite glass powder to a shaped body after or before an optional heat treatment and firing the shaped body at a temperature below the melting point of cordierite. The porous cordierite ceramics are useful as a carrier for gas chromatography or various chemical reactions.
摘要:
A method of consolidating fine pores of a porous glass by impregnating the fine pores with an energy decomposable compound exemplified by SiH.sub.4. Energy is applied to the decomposable compound thereby forming active species which bond with each other and the functional groups on the surface of the fine pores three-dimensionally to thus form a glass network structure in the pores.
摘要:
A method for the manufacture of foamed glass includes providing a mixture of a finely divided glass and a bonding agent. The bonding agent is selected from the group of aqueous solutions of the oxygen acids of beryllium, boron, aluminum, silicon, germanium, arsenic, antimony, tellurium, polonium, astatine and phosphorous, the aqueous solutions of the anhydrides of the oxygen acids, and the aqueous solutions of the salts formed by the oxygen acids and the basic oxides, and basic hydroxides of beryllium, boron, aluminum, silicon, germanium, arsenic, antimony, tellurium, polonium, astatine and of the transition metals having a variable oxidation number. The mixture is dried at a temperature from 20.degree. to 600.degree. C. to thereby transform the bonding agent into a gel having water bound thereto. The dried mixture is heated to a temperature from 800.degree. to 1,000.degree. C. to thereby melt the mixture and release the bound water from the gel. The released water forms a vaporous cellulating agent which effects the foaming of the molten glass.
摘要:
An improved method of forming a hydrated mixed silicate powder from broken or chunk glass by dissolving the broken or chunk glass and oxidic and/or siliceous materials in a rolling autoclave or similar milling apparatus which constantly renews the glass surface to shorten the dissolving time.
摘要:
To increase the thermal insulating properties of a vitreous material of closed cellular structure, the material while still in a molten state is subjected to pressure or stretching or a combination of the two forces in mutually perpendicular directions, whereby the cells become compressed or stretched or both, the height of the cells in the deformed material being reduced to a relatively considerable extent with respect to their original form. Deformation may be such that the cells resemble hollow fibres. The deformed material may be further treated, to roughen at least one surface, by placing the material while still plastic in contact with granular material, such as sand, of higher melting point so that the granular material becomes embedded on the surface. Tiles or bricks of the material can then be more easily cemented to other surfaces.