Abstract:
Disclosed are certain polymeric compounds and their use as organic semiconductors in organic and hybrid optical, optoelectronic, and/or electronic devices such as photovoltaic cells, light emitting diodes, light emitting transistors, and field effect transistors. The disclosed compounds can provide improved device performance, for example, as measured by power conversion efficiency, fill factor, open circuit voltage, field-effect mobility, on/off current ratios, and/or air stability when used in photovoltaic cells or transistors. The disclosed compounds can have good solubility in common solvents enabling device fabrication via solution processes.
Abstract:
There is provided an electroactive material having Formula I wherein: Q is the same or different at each occurrence and can be O, S, Se, Te, NR, SO, SO2, or SiR3; R is the same or different at each occurrence and can be hydrogen, alkyl, aryl, alkenyl, or alkynyl; and R1 through R6 are the same or different and can be hydrogen, alkyl, aryl, halogen, hydroxyl, aryloxy, alkoxy, alkenyl, alkynyl, amino, alkylthio, phosphino, silyl, —COR, —COOR, —PO3R2, —OPO3R2, or CN.
Abstract:
There is provided a hole transport composition having (i) a first hole transport polymer having crosslinkable groups, and (ii) a second hole transport polymer having substantially no crosslinkable groups. There is also provided a crosslinked hole transport layer and an electronic device containing the crosslinked hole transport layer.
Abstract:
An object of the invention is to provide an organic light emitting device having a high current density at the time of driving. A means for achieving the object is an organic light emitting device which has an anode and a cathode, has between the anode and the cathode a light emitting layer containing a light emitting organic compound, and has between the anode and the light emitting layer a functional layer containing an ionic liquid and an organic compound.
Abstract:
An object of the invention is to provide a polymer compound having a high hole transport capacity, excellent in electrochemical stability, and suitable to film formation according to a wet film formation method. Another object of the invention is to provide an organic electroluminescence element having a high current efficiency, a low drive voltage, and a long derive lifetime. The polymer compound has a crosslinking group bonding to the arylamine moiety in the repeating unit via at least one single bond therebetween.
Abstract:
Materials for organic electronic devices including organic photovoltaic devices. An oligomer or polymer comprising: wherein R1, R2, R3, and R4 are independently hydrogen or solubilizing groups. Monomers and ink compositions can be also prepared. The materials can be used in an OPV active layer and show excellent absorption properties with bathochromic shift.
Abstract:
Fused thiophene (FT) compounds, FT polymers, FT containing articles, and methods for making and using the FT compounds and polymers thereof of the formulas, as defined herein.
Abstract:
A process for producing transparent conductive films includes mixing and dispersing a carbon nanotube having a hydrophilic group introduced on the surface thereof and a hydrophilic conductive polymer in a solvent to obtain a carbon nanotube/conductive polymer composite dispersion in which a weight ratio of the hydrophilic conductive polymer to the carbon nanotube is 0.5 or more and 4 or less, the concentration of the carbon nanotube being 0.1 g/L or more and 2.0 g/L or less, and attaching onto a transparent substrate the carbon nanotube/conductive polymer composite dispersion.
Abstract:
A polymer compound that, when used for fabrication of a light emitting device, results in an excellent luminance lifetime for the obtained light emitting device. A polymer compound comprising a constitutional unit represented by formula (1). (In the formula, R1 and R2 each independently represent an unsubstituted alkyl group. R3 and R4 each independently represent a group other than an unsubstituted alkyl group. R5 and R6 each independently represent an unsubstituted or substituted alkyl, unsubstituted or substituted alkoxy or unsubstituted or substituted aryl group. The letters a and b each independently represent an integer of 0-4. The letters c and d each independently represent an integer of 0-3. When multiple R3, R4, R5 and R6 groups are present, they may be the same or different.)