Abstract:
A method of treating particulate, in substance including selecting a load based on a planned in use loading of the particulate; applying the load to the particulate; injecting material below the load; and removing the load.
Abstract:
A reinforcement system includes a structural member such as a concrete wall including a pair of holes formed therein. A fiber reinforcement strip is adhered to the structural member between the pair of holes. A U-shaped bracket includes a pair of legs being secured in the pair of holes and a bridge portion that overlaps an the fiber reinforcement strip, a secondary reinforcement strip can be used to distribute forces from the bridge portion of the bracket along a length of the fiber reinforcement strip.
Abstract:
A method of treating particulate, in substance including selecting a load based on a planned in use loading of the particulate; applying the load to the particulate; injecting material below the load; and removing the load.
Abstract:
A retention tie system for post-construction installation to stabilize masonry or composite walls. The system comprises a tie member anchored in an anchor hole bored into the existing foundation and a tensioned against a base plate and a cover plate seated along the top of the wall. A bracing member is used to provide lateral stability to the respective plate members. A tension washer is used to ensure that the tie members are tensioned to the appropriate load.
Abstract:
A load indicating washer, or tension washer, for visually indicating pre-determined magnitudes of tension force in a tension tie member. The tension washer comprises a body portion with a deformable, curved annular flange member depending from the body portion. When the tension washer is compressed against a flat bearing surface, the flange member deforms to produce a visual or color indication of the magnitude of load in the tie member.
Abstract:
The basement wall reinforcement system comprises carbon fiber materials securely mounted to the wall being reinforced as well as to structural components at both the top and bottom of the wall. These additional connections at the top and bottom of the wall increase the capacity of the carbon fiber to prevent bowing and cracking by transferring lateral forces from the wall to these structural components. Such structural components can include foundations, basement floors, sill plates, rim joists and floor joists. The carbon fiber can be connected to these structural components by pins, epoxies and specially designed brackets.
Abstract:
A system for stabilizing an existing basement wall includes a wall stabilizing system including a first wall anchoring device installed on a surface of the existing basement wall. The first wall anchoring device may further include a first anchoring plate fastened to a surface of the existing basement wall tethered via a substantially rigid rod to a second anchoring plate embedded underground outside the existing basement wall at a distance away from the existing basement wall. The system may include a first layer of sprayable concrete material applied over the existing basement wall. System may further include a third anchoring plate installed on a surface of the first layer of sprayable concrete material. The system may also include a second layer of sprayable concrete material applied over the first layer of sprayable concrete material.
Abstract:
A reinforcing shape member for a concrete block wall, and system of construction using same, including a wall engagement portion having an integral top end engaging wall portion and an integral bottom end engaging wall portion where the top end engaging wall portion and the bottom end engage and embed into the concrete wall at various depths.
Abstract:
A wall support and reinforcing apparatus that applies a constant force on a structural support member, such as a steel I-beam, that is adjacent the wall. The apparatus includes a bias that is interposed between the building, or a bracket mounted to the building, and the structural member. Thus, the bias force is applied to straighten the wall at all times, thereby having the straightening effect and keeping the structural member from being displaced laterally due to complete release of all forces to the structural member.
Abstract:
In accordance with one preferred embodiment of the present invention, a wall brace apparatus for use in supporting a damaged wall from the interior of a building basement is disclosed. The wall brace apparatus includes an alignment brace positioned between a floor bracket, which is secured to a floor and a pushing rod bracket, which is secured to an overhead floor joist and aligned with the floor bracket. The wall brace is further attached to brace holders which are secured between the pushing rod bracket and the wall surface. The wall brace apparatus includes a jack mechanism positioned between the pushing rod bracket and the alignment brace with holding brackets positioned between the pushing rod bracket and the overhead floor joists. A method of supporting a wall from the interior of a building basement having overhead floor joists is also disclosed.