Abstract:
An atmospheric heat exchange apparatus constructed from two thin polymeric films is provided which can be mounted for operation on contoured surfaces. Heat is transferred between the atmosphere and a liquid medium flowing between the sheets. The apparatus can be mounted with no operational degradation resulting from flow-inhibiting bends in the polymeric films.
Abstract:
A process for the manufacture of a flat-shaped hollow body through the use of a forming die, wherein mold segment halves move continuously along a forming die and which, upon entering the forming die, are moved in an operating direction facing each other in pairs in a closed mold in tight proximity to each other. The mold is injected with warm thermoplastic hose stock which is shaped under vacuum action in the mold. In order to produce flat-shaped hollow bodies on a continuous basis the hose stock is subjected to vacuum action over at least a portion of its cross section even before mold segment halves are brought together and is pressed together accompanied by the formation of welds and the creation of hollow spaces over a portion of its cross section.
Abstract:
A solar heating system for preheating water which may be used in conjunction with an existing hot water heater. The use of potable water as the heating fluid renders the use of a heat exchanger unit unnecessary. A novel collector unit is disclosed which includes a molded plastic collector frame with integral fluid passageway and a thermally compatible absorber plate bonded to the frame. The use of thermally compatible collector components serves to minimize bondline strains due to uneven thermal expansion of the materials. Reliable and continuous operation of the system is, therefore, possible over a wide range of temperature conditions. Diagonally opposite standoff regions provide even liquid flow across the collector surface regardless of which way the collector is turned. The durable unitized collector design eliminates the need for frame members, additional fluid conduits, specially manufactured collector plates and multiple collector sealing layers. The invention provides an exceptionally low cost, material intensive solar heating system.
Abstract:
A flexible solar energy collector of unitary, one-piece, self-supporting construction provided with substantially true-round manifolds and secondary manifolds interposed between the primary manifolds and a multiplicity of fluid flow passages extending transversely therebetween. The opposite end portions of the primary manifolds are provided with inserts for reinforcing the same. Means are provided for coupling adjacent collectors together to form an array of such collectors in a solar heat collecting system.
Abstract:
A mat-shaped solar heater having multiple parallel flow channels for a heat-carrying medium. Any two adjacent ones of the flow channels have a common linear divider and at least some of the dividers terminate short of an edge of the heater. Inlet and outlet conduits communicate with the interior of the heater for allowing the medium to be introduced into and to flow out of the flow channels. Discharge conduits are provided which communicate with the interior of the heater in the region of the edge in question. When the discharge conduits are closed, the inlet and outlet conduits form the sole communication between the interior and exterior of the heater, whereas when the discharge conduits are open, the medium may flow through these discharge conduits, thereby facilitating the removal of heat-carrying medium from the interior of the heater.
Abstract:
A lightweight, low cost, solar heat collecting system is provided for use with homes and other buildings. Solar heat collecting panels are mounted on a roof or other support and connected to the building's heating system. A liquid black body medium is pumped to the elevated upper end of each unit and is allowed to drain down through each panel by gravity feed back into a storage tank where the heated liquid is circulated, on demand, through the building. Each heating panel is comprised of a rigid foam plastic frame having a back wall over which is disposed a reflective stratum. A sheet of plastic material having a black surface is bonded to the reflective stratum along spaced parallel lines to define a plurality of parallel channels extending lengthwise of the panel. Manifolds are provided at opposite ends of the panel to feed the liquid into and drain the liquid from the channels. Spaced layers of flexible, transparent plastic film are mounted to the frame across the front of the panel to pass radiant heat from the front to heat liquid in the channels and trap the heat absorbed by the panel.
Abstract:
An atmospheric heat exchange method and apparatus is provided that is simple and inexpensive to construct and made from readily available, low cost materials; that is adaptable to be configured for mounting to a wide variety of existing structures; and which is highly efficient, lightweight and readily collapsible to facilitate storage and shipment.
Abstract:
Flat plate absorber member includes a flat heat absorbing sheet of a thin metal foil such as copper, or a thin plastic film such as polyvinyl fluoride, bonded to a channeled substrate, and particularly to a plastic laminate such as a glass epoxy laminate. The improved absorber member provides an energy collecting efficiency which is much greater than that of a much more expensive conventional collector having a series of copper tubes soldered to a copper sheet. The absorber is preferably made by the method of taking a base sheet of fully cured glass epoxy laminate and overlaying it with a precut, patterned intermediate layer of semi-cured glass expoxy which defines the depth of the side walls of the channels. The cover sheet of metal foil or plastic film is then placed over the semi-cured glass epoxy intermediate layer and heat and pressure are applied to bond the semi-cured glass epoxy to the cover sheet and to the previously cured base sheet.
Abstract:
A panel having multiple tubular passages extending therethrough and fitted on each end with a fluid tight hollow header. Apertures through one side of the headers place the tubular passages in communication with the interior of the headers. Fluid pumped into one header flows through the tubular passages to the other header, exchanging heat with the environment surrounding the panel as it passes therethrough. The panels are formed to provide a flow restrictive feature at the ends of the through fluid passages so that substantial flow will exist in all passages in all panels in an array of panels. One method for obtaining a fluid tight bond between the headers and the panel involves a forming process utilizing a heated die applied to the panel ends, and a subsequent panel and header material melting process followed by imposing pressure contact between the formed panel ends and the headers to thereby effect a permanent bond or weld.