Abstract:
A method of manufacturing a cold cathode type electron emitting device, comprising forming a pair of electrodes, which are spaced from each other, on a substrate, forming conductive thin films, which are electrically connected with the pair of electrodes and have a cracked portion therebetween, on a space between the pair of electrodes, forming conductive deposits on the cracked portion of the conductive thin films to form an electron emission section, and subjecting the electron emission section to a treatment using plasma to expand a gap between the conductive deposits on the cracked portion.
Abstract:
An electron source comprises a plurality of electron-emitting devices and a drive means for driving the devices. The drive means applies a voltage above a threshold level to selected ones of the plurality of electron-emitting devices according to an image signal to cause the selected devices to emit electrons. The drive means also applies a voltage pulse for bringing the plurality of electron-emitting devices into a high resistance state. The voltage pulse for bringing into a high resistance state has a polarity reverse to that of the voltage for causing electron emission and has a voltage rising rate of greater than 10 V/sec.
Abstract:
An electron-emitting device comprises a pair of oppositely disposed electrodes and an electroconductive film arranged between the electrodes and including a high resistance region. The high resistance region has a deposit containing carbon as a principal ingredient. The electron-emitting device can be used for an electron source of an image-forming apparatus of the flat panel type.
Abstract:
The present invention provides a metal composition for making a conductive film and a metal composition for making an electron emission element. The metal composition includes a vinylpyrrolidone-acrylic acid copolymer represented by formula (I).
Abstract:
An electron is source formed by a plurality of electron-emitting devices provided on a substrate and connected by a wiring. Use of an electron ray manufacturing apparatus having electrical connecting means connected to the wiring at three or more points can uniformize characteristics of a plurality of the electron-emitting devices.
Abstract:
A field emission cathode is provided which includes a substrate and a conductive layer desposed adjacent the substrate. An electrically resistive pillar is disposed adjacent the conductive layer, the resistive pillar having a substantially flat surface spaced from and substantially parallel to the substrate. A layer of diamond is disposed adjacent the surface of the resistive pillar.
Abstract:
There is provided an electron emitting device including a substrate, a pair of electrodes formed on the substrate and being apart from each other, a pair of electrically conductive films formed on the electrodes, respectively, and being apart from each other, a distance between the electrically conductive films being shorter than a distance between the electrodes, and an electron emitting film formed between the electrically conductive films, the electron emitting film containing boron and at least one of carbon and nitrogen.
Abstract:
An electron emitting apparatus that can realize a convergence of electron trajectories and an improved electron emission efficiency. The apparatus comprises a substrate having a first primary surface that is substantially planar, an electron emitting device comprising first and second electroconductive members disposed on the primary surface and at an interval from one another, and an anode electrode having a substantially planar surface opposite to the first primary surface. A voltage applying means of the apparatus applies a potential higher than a potential applied to the first electroconductive member to the second electroconductive member to irradiate electrons emitted from the electron emitting device onto the anode electrode.
Abstract:
In an electron source having an electron emitting member, the electron emitting member is connected to a first or second conductive member by a third conductive member which is connected to the first or second conductive member through an aperture forming in an insulating member, and such aperture has such a shape as to become narrower from an end of the third conductive member toward the other end. Such configuration avoids that the third conductive member is damaged in the connecting portion with the first or second conductive member by the thermal stress therein.
Abstract:
An electron-emitting device comprises an electroconductive film including an electron-emitting region disposed between a pair of electrodes arranged on a substrate. The electron-emitting region is formed close to the step portion formed by one of the electrodes and the substrate.