Abstract:
A light emission device and a display device having the light emission device are provided. The light emission device includes: a first substrate and a second substrate facing the first substrate; a plurality of first electrodes and a plurality of second electrodes on an inner surface of the first substrate, the first electrodes crossing the second electrodes; a plurality of electron emission regions electrically connected to the first electrodes at crossing regions where the first electrodes cross the second electrode; a light emission unit on an inner surface of the second substrate; and at least one spacer between the first and second substrates, Here, a shortest distance D between the spacer and the electron emission regions satisfies the following condition: 500 μm≦D≦2Dh, where, Dh is a diagonal length of at least one of the crossing regions.
Abstract:
A flat-type fluorescent lamp device includes a first substrate, a plurality of first and second electrodes arranged on the first substrate at fixed intervals, a first fluorescent layer on an entire surface of the first substrate including the first and second electrodes, a second substrate having a plurality of projection portions for maintaining a uniform gap between the first and second substrates, and a second fluorescent layer on the second substrate except at regions, of the projection portions that contact the first substrate.
Abstract:
Methods and apparatus are provided for increasing the life of a fluorescent lamp suitable for use as a backlight in an avionics or other liquid crystal display (LCD). The apparatus includes a channel configured confine a vaporous material that produces an ultra-violet light when electrically excited. A layer of light-emitting material disposed within at least a portion of the channel is responsive to the ultra-violet light to produce the visible light emitted from the lamp. To increase the lifespan of the lamp, a protective coating is provided on the layer of light-emitting material. The protective coating comprises a material that is transparent to both ultra-violet and visible light, yet is capable of filling even small gaps in the light-emitting material. In lamps wherein the vaporous material comprises mercury and the light-emitting material comprises a phosphorescent material, for example, the protective material may comprise fused silica (i.e. silica dioxide or “quartz glass”).
Abstract:
In an embodiment of the present invention, a light emission device includes a vacuum vessel that includes first and second substrates facing each other and a sealing member for sealing the first and second substrates, an electron emission unit that is located on an inner surface of the first substrate and includes a plurality of electron emission regions and a plurality of driving electrodes for controlling the electron emission of the electron emission regions, a light emission unit that is located on an inner surface of the second substrate, and a heat dissipation layer that defines an uppermost layer of the electron emission unit and has a thermal conductivity of at least 2 W/cmK, a portion of the heat dissipation layer extending out of the vacuum vessel through a region between the sealing member and the first substrate.
Abstract:
The present invention relates to a substrate comprising two main sides, at least one of which comprises a non-reflecting coating, characterized in that an air-contacting outer layer is deposited onto said non-reflecting coating, said outer layer having a thickness of 10 nm or less, a surface energy of less than 60 mJ/m2 and a surface presenting a contact angle with oleic acid of less than 70°.
Abstract translation:本发明涉及包括两个主要侧面的基底,其中至少一个包括非反射涂层,其特征在于,将空气接触的外层沉积在所述非反射涂层上,所述外层的厚度为10 nm以下的表面能,小于60mJ / m 2的表面能和与油酸的接触角小于70°的表面。
Abstract:
A flat light source including a first substrate, a second substrate, a sealant, several sets of dielectric pattern and a phosphor layer is provided. The first substrate has electrodes thereon. The sealant is disposed between the first and second substrates to form a space between the first and second substrates and the sealant. These sets of dielectric pattern are formed in the space between the first and second substrates. Each set of dielectric pattern has at least two dielectric strips, and each dielectric strip covers one of the electrodes correspondingly. Each dielectric strip has a top surface and two side surfaces, and the top surface has an uneven contour. The phosphor layer is disposed between the two dielectric strips of each set of dielectric pattern, and the phosphor layer is further disposed on the top surface of the dielectric strips.
Abstract:
A surface light source device includes a light source body having an internal space. A partition wall is disposed in the internal space of the light source body to divide the internal space into a plurality of discharge spaces. The partition wall has end portions that make contact with inner surface of the light source body. The partition wall has a throughhole, through which the discharge spaces are connected to each other. The light source body includes a voltage applying part that applies a voltage to the discharge space to generate plasma in the discharge space. A barrier is disposed adjacent to the throughhole to restrict a flow of the plasma generated from a discharge gas through the throughhole. The barrier screens the throughhole to restrict the flow of the plasma through the throughhole. Therefore, uniformity of luminance of the surface light source device is improved.
Abstract:
A surface light source device includes a lamp body, a space dividing member, a discharge gas supplying member and a voltage applying part. The lamp body includes a flat shaped space and a fluorescent layer disposed in the flat shaped space to convert an invisible light into a visible light. The space dividing member divides the flat shaped space into a plurality of discharge spaces. The discharge gas supplying member is disposed to pass through the space dividing member and is fixed to the space dividing member, and supplies the discharge spaces with a discharge gas that generates the invisible light. The voltage applying part applies a discharge voltage to the discharge gas. Therefore, the lifetime of the surface light source device generating a planar light is increased, and the luminance of the light becomes uniform so that the display quality of an image is improved.
Abstract:
A surface light source apparatus (100) includes a main body (105) having a space, and a plurality of space division members (130) being disposed in the space so that the space division members (130) are extended in a first direction and arranged in a second direction spaced apart from one another to divide the space into a plurality of light emitting spaces (112). The space division members (130) include a plurality of connecting holes (132). At least two of the connecting holes (132) have different heights from one another with respect to a bottom surface of the main body (105) to have the light emitting spaces connected to one another through the connecting holes (132). The surface light source apparatus also includes a visible light emitting unit to generate a visible light in the light emitting spaces. Therefore, the brightness-uniformity of the surface light source apparatus and an image display quality of a display device are improved.
Abstract:
A flat-type fluorescent lamp device includes first and second substrates facing each other, a plurality of first electrodes on the first substrate disposed along a first direction, each first electrode having protrusions extending from both sides of the first electrode along the first direction, a plurality of second electrodes on the first substrate, the second electrodes each having concave portions that correspond to the protrusions of the first electrode and convex portions that correspond to regions between the protrusions of the first electrode, a first fluorescent layer on an entire surface of the first substrate including the first and second electrodes, and a second fluorescent layer on the second substrate.