Abstract:
There is provided an arrangement of components for coupling data between a power line and a communication device. The arrangement includes an inductive coupler that employs a power line conductor as a primary winding, a capacitor connected across a secondary winding of the inductive coupler for creating a resonant circuit with the secondary winding at a frequency within a desired frequency band, and an impedance matching transformer for connecting a communications device to the secondary winding. The resonant circuit has a loaded Q consistent with the desired bandwidth. An alternative arrangement includes a capacitor in series with a conductive cylinder between the power line and the communication device, where the capacitor is for blocking power line voltage while passing a signal between the power line and the communication device, and the conductive cylinder appears as a low inductance to the signal.
Abstract:
There is provided an inductive coupler for coupling a signal to a power line. The inductive coupler includes a magnetic core for placement about the power line, a coil wound around a portion of the magnetic core, and a semiconducting coating that encapsulates the core and contacts the power line. The signal is coupled to the coil.
Abstract:
A termination structure for semiconductor devices and a process for fabricating the termination structure are described which prevent device breakdown at the peripheries of the device. The termination structure includes a polysilicon field plate located atop a portion of a field oxide region and which, preferably, overlays a portion of the base region. The field plate may also extend slightly over the edge of the field oxide to square off the field oxide taper. The termination structure occupies minimal surface area of the chip and is fabricated without requiring additional masking steps.
Abstract:
A cable system (10) has a plurality of CAUs (34) coupled to a variety of network devices (58-68) in the subscriber's premise (36). The network devices (58-68) transmit signals to the CAU (34) in a clear frequency (100). The signals are coupled to a filter (70) which blocks any ingress noise from the premise (36). The filter (70) is coupled to a mixer (76), which down converts the signals from the clear frequency (100) to a desired frequency (104). Upstream signals in a bypass band (102) are coupled from the network devices to a low pass filter (72). The signals are then combined with the downconverted signals and transmitted into the cable system (10).
Abstract:
A regenerative RF bi-directional communications system is provided for establishing RF coverage within a RF block tunnel area. The system uses a plurality of cascaded amplifier stages for periodically regenerating signals which are transmitted and received along a series of radiating cable length which link base station transceivers to hand-held or like mobile communication units. An intermediate frequency distribution system is used so that the required level of amplification is achieved through the several cascaded amplifier stages at the level of low-power IF signals generated from the original RF signals in conjunction with the appropriate oscillator and pilot signals. The IF distribution system restricts the cascading effect occurring due to the plurality of cascaded amplifier stages on the relatively low-power IF signals, thereby producing a negligible amount of intermodulation.
Abstract:
A broadband local area network transmits outbound signals in an outbound frequency band and inbound signals in an inbound frequency band. In one configuration, the network comprises a central hub and a plurality of nodes connected to the hub. Each of the nodes comprises a bidirectional amplifier having a fixed gain across the entire inbound and outbound bandwidth and a line balancer. The line balancer includes a variable cable simulator circuit for simulating the loss of a variable amount of coaxial cable and an equalizer circuit for equalizing the loss of a fixed amount of coaxial cable. The network also includes a plurality of remote outlet clusters. Each remote outlet cluster is connected to one of the nodes by a coaxial transmission path and comprises a fixed attenuation and a RF splitter having a plurality of outlets for connection to user devices. The number of outlets of each remote outlet cluster depends on the length of the transmission path to the node to which it is attached.
Abstract:
An easy to install and easy to expand broadband local area network is disclosed. The network has a star-type architecture based upon a fixed-gain, fixed-loss approach to amplification and a star-feeder approach to providing user connection to the network.
Abstract:
A bilateral transmission line repeater is disclosed in which opposite directions of transmission are separated into different frequency bands. The amplifiers for each direction of transmission include an automatic gain control circuit for controlling the gain of the amplifier. Gain control for the inward bound amplifier (toward a central location such as a telephone central office) is under the control of an automatic gain control signal derived from the outward bound signal as well as from the inward bound signal. Feedback around the gain control amplifier is accomplished using a current mirror circuit to avoid loading the amplifier output.
Abstract:
A time sharing subscriber communications system wherein a timedivision multiplexed signal having a series of frames and a predetermined number of time slots in each frame, is carried from a transmitter terminal over a single communications circuit containing a plurality of series connected subscriber terminals. At the transmitter terminal, information corresponding to input signals received from various input channels is placed in the time slots in the series order of the subscriber terminals. At each of the subscriber terminals the information contained in a set of one or more time slots of each frame related to that subscriber terminal is tapped-off and the other information is retransmitted over the circuit along with new information provided at the subscriber terminal in the last set of time slots. Thus, the information for the succeeding subscriber terminal occupies the first set of time slots in each frame of the retransmitted signal, and all of the subscriber terminals may be of identical construction in respect to identifying within each frame, the set of time slots related thereto. In a communications system wherein a pulsed signal, containing audio information derived from an audio input signal within a first frequency range, and supervisory information derived from a supervisory input signal at a second frequency outside the first frequency range is demodulated to provide a composite signal containing both the audio information within the first frequency range and the supervisory information at the second frequency, a synchronous detector is used to produce an output signal corresponding to the supervisory information whenever the composite signal contains second frequency components in synchronism with the pulsed signal.