Abstract:
A boom hose apparatus for a material collection vehicle includes a telescoping boom assembly and a hose assembly supported by the boom assembly. The boom assembly includes a plurality of telescoping conduits. A flexible hose is received through the telescoping conduits and can slidably extend from, or retract into, the conduits independently from the telescoping of the conduits.
Abstract:
A boom hose apparatus for a material collection vehicle includes a telescoping boom assembly and a hose assembly supported by the boom assembly. The boom assembly includes a plurality of telescoping conduits. A flexible hose is received through the telescoping conduits and can slidably extend from, or retract into, the conduits independently from the telescoping of the conduits.
Abstract:
An air cart for distributing air entrained particulate material from a chamber or tank to a plurality of distribution lines for application to an agricultural field has a tank refilling feature utilizing air flow from the cart distribution system or from a dedicated pneumatic source. The cart conveying system air flow is diverted and passed through an assembly containing multiple venturis which also receives particulate material from a supply source. The air entrained material from the source is conveyed to and gently deposited in the cart tank. Exhaust air from the tank may be directed back into the cart conveying system or vented through an air diffuser located beneath the cart. Exhaust air which is directed back to the cart conveying system may return to a location closely adjacent that from which it was originally diverted.
Abstract:
An air cart for distributing air entrained particulate material from a chamber or tank to a plurality of distribution lines for application to an agricultural field has a tank refilling feature utilizing air flow from the cart distribution system or from a dedicated pneumatic source. The cart conveying system air flow is diverted and passed through an assembly containing multiple venturis which also receives particulate material from a supply source. The air entrained material from the source is conveyed to and gently deposited in the cart tank. Exhaust air from the tank may be directed back into the cart conveying system or vented through an air diffuser located beneath the cart. Exhaust air which is directed back to the cart conveying system may return to a location closely adjacent that from which it was originally diverted.
Abstract:
An air cart has a drop chute for conveying an agricultural product such as seed, from a metering device to a venturi portion of a product conveyance tube. The drop chute has a contoured downstream sidewall resulting in changes in drop chute width which introduce vortices providing an enhanced product flow. The downstream sidewall has an inward sloping region reducing the drop chute width beginning closely adjacent the metering device and continuing down about one-third the way from the metering device to the conveyance tube, and an abrupt corner causing an increase in drop chute width near the product conveyance tube followed by a curved region creating a gradual further increase in width terminating adjacent to the product delivery tube. A large low speed vortex is created near the inward sloping region and a small strong vortex is created adjacent the curved region.
Abstract:
A truck body that efficiently hauls homogeneous and cohesive materials that typically coagulate and adhere together in one consolidated mass. The adhesion of this consolidated mass to the surface of the truck body is minimized and the build up of “carryback” is effectively prevented during haul cycles. Hauled amalgamated materials are dumped from the truck body such that the amalgamation breaks up and is safely dumped. One typical material that displays such a coagulated conglomerate massing is “oil sands” from which oil is extracted. The body design encourages the material to break up as it is dumped by using outwardly tapered walls and a non-linear edge from which the loaded material falls.
Abstract:
A portable material delivery apparatus for transporting and depositing a flowable material at a deposit site, including a vehicle and a hopper mounted on the vehicle for holding the material and having a lower opening for releasing the material. First and second circulating conveyors move the material released from the hopper to the deposit site. The first conveyor is fixed beneath the hopper. The second conveyor is vertically tiltable and laterally rotatable relative to the first conveyor. The apparatus includes a control station with an operator platform and controls for controlling the conveyors. The control station is mounted to and is movable with the second conveyor as it tilts and rotates. The control station is positioned such that a single operator standing on the operator platform can operate the controls while directly observing the material moving on the second conveyor and being ejected toward the deposit site.
Abstract:
A mobile infill reclamation system comprising a mobile platform configured to be readily moved from a first location to a second location in relatively close proximity to an existing synthetic turf surface, a support structure mounted on the mobile platform, multiple processing components supported by the support structure and configured and arranged to process used infill material from the existing synthetic turf surface, an infill intake supported by the support structure and configured and arranged to receive the used infill material, and an infill output supported by the support structure and configured and arranged to discharge infill material processed by the processing components.
Abstract:
A method and system are disclosed for moving and placing in hard to reach locations granular and other particulate material such as sand, gravel, earth and similar materials. The system includes an improved auger for moving the material and an improved rotary airlock mechanism designed to withstand the abrasive action of the particulate material and at the same time move the material several hundred feet through a flexible conduit for placement in a pre-designated location. A system and apparatus is also disclosed for transporting on one vehicle all of the devices needed at a remote site for operation the particulate placement system, including a front loader.
Abstract:
A compact mobile vacuum boring, and excavation method comprising a device which will create a vacuum condition within a vacuum container and having a vacuum conduit to air convey a liquid and or solid particles into the vacuum container. The vacuum container air inlet & outlet conduit arrangement may also facilitate the separation of solids from the vacuumed air flow by producing a cyclone effect within the vacuum container. A circular cyclone effect is created within the vacuum container by the arrangement relationship between the inlet and outlet vacuum air conduits and baffles. As the air velocity slows, the solids precipitate out of the air and settle in the vacuum container. A housing with filters disposed within it is also adjacently mounted near the vacuum container in order to reduce the quantity of connecting conduits and facilitate a compact, efficient and clean interaction between the vacuum container and the filter housing. The vacuum container access door and the filter housing access door may be adjacently placed in near proximity to each other for user friendly access to empty and clean the vacuum container and filter house or a common door may access both. A compressible seal and conduit arrangement may be used as a quick disconnect between the vacuum producing means and the filter housing. A reversing valve arrangement may be used to back flow air through the filter. Sensors, data gathering, data logging and documentation of a service event may be included. The above systems may be mounted on a variety of mobile platforms.