摘要:
A medical, surgical, or operating kit for occluding or controlling blood flow or fluid flow is disclosed. The kit is comprised of (a) a dispersion of magnetic microparticles which can be administered into a blood vessel or fluid vessel, and (b) an external magnetic field source which is adapted to be placed at the desired site above the path of the bloodstream or fluid flow to form a plug or blockade within the blood vessel or fluid vessel that occludes or controls blood flow or fluid flow.
摘要:
An implantable magnet that can freely turn in response to an external magnetic field, thus avoiding torque and demagnetization on the implantable magnet. The implantable magnet can be combined with an electric switching function depending on the orientation of an external magnetic field, thus protecting an implanted coil and/or implant electronics against induction of over-voltage or performing an electric switching function for other various purposes. The magnetic switch may further include, for example, a first switching contact and a second switching contact. A magnetically soft body that includes an electrically conductive surface is shiftable between a first position where the body is in simultaneous contact with the first and second switching contacts, and a second position where the body is out of contact with at least one of the first and second switching contacts. The body and the implantable magnet are positioned such that the body is shifted to one of the first position and the second position as a function of the external magnetic field resulting in a magnetic force between the magnet and the magnetically soft body.
摘要:
A method of navigating a medical device having a changeable magnetic moment within an operating region within a patient, the method includes applying a navigating magnetic field to the operating region with an external source magnet, and changing the direction of the magnetic moment in the medical device to change the orientation of the medical device in a selected direction within the operating region. The magnet moment of the medical device can be created by one or more electromagnet coils, in which case the magnetic moment can be changed by changing the current to the coil. Alternatively, the magnetic moment of the medical device can be created by one or more permanent magnets, in which case the magnetic moment can be changed by mechanically or magnetically manipulating the permanent magnet.
摘要:
An implantable magnet that can freely turn in response to an external magnetic field, thus avoiding torque and demagnetization on the implantable magnet. The implantable magnet can be combined with an electric switching function depending on the orientation of an external magnetic field, thus protecting an implanted coil and/or implant electronics against induction of over-voltage or performing an electric switching function for other various purposes. The magnetic switch may further include, for example, a first switching contact and a second switching contact. A magnetically soft body that includes an electrically conductive surface is shiftable between a first position where the body is in simultaneous contact with the first and second switching contacts, and a second position where the body is out of contact with at least one of the first and second switching contacts. The body and the implantable magnet are positioned such that the body is shifted to one of the first position and the second position as a function of the external magnetic field resulting in a magnetic force between the magnet and the magnetically soft body.
摘要:
A method for treating retinal detachment in an eye is provided. The method includes inserting a magnetic fluid into the vitreal chamber of the eye and applying a magnetized scleral buckle to the eye to treat retinal detachment.
摘要:
Disclosed is a process of thermal treatment in a tissue comprising embedding an implant element in an organism and externally applying a high frequency magnetic field characterized in that the implant element comprises a magnetic exothermic member partially or completely covered with a non-magnetic insulating film.According to the present invention, the temperature range required in the process of medical treatment in tissue (42.degree. C. to 43.degree. C.) can be more effectively maintained compared with a conventional magnetic exothermic member. Because of the complete coverage with an insulating film, a magnetic exothermic member having a higher Curie temperature than that of the conventional magnetic exothermic member can also be employed. The magnetic exothermic member can provide an isotropic exothermic characteristic when the powders are molded and the components of the magnetic exothermic member never dissolve in a living body.
摘要:
An apparatus and method are provided which utilize either the attracting forces of dissimilar pole magnets, or the repelling forces of similar pole magnets, to keep passageways open in living organisms. These passageways might otherwise collapse and close involuntarily due to dysfunction, thus impeding flow of vital gaseous or liquid fluids. Embodiments are described for both permanently implanted and for removable magnets, which may or may not interact with externally attached magnets, thus maximizing the convenience of utilizing this system for the patient. A method of preventing accidental extubation is also described.
摘要:
Systems and devices for pulsed heating of the ST36 acupoint and/or other acupoint(s) by noninvasive transcutaneous magnetic induction heating towards (1) ameliorating cognitive impairment arising, for example, from head-injury, stroke, and neurodegenerative diseases such as Alzheimer's; (2) helping to prevent neurodegenerative diseases; (3) preventing and treating age-related cognitive decline; and (4) preventing and treating depression manifesting, for example, as Major Depressive Disorder, Dysthymic Disorder, or Adjustment Disorder with Depressed Mood.
摘要:
A touch screen or touch screen appliance includes built-in UV LEDs. The LEDs sterilize the touch screen at start-up, and periodically during operation. The LEDs may be disposed at the edges of the glass display such that the UV light is completely internally reflected within the glass display to prevent damage or strain to the user's eyes. Alternatively, the LEDs may be disposed behind the glass display, potentially also behind a UV fluorescing or phosphorescing layer to sterilize the glass from behind. Alternatively, the LEDs may be disposed in a layer in front of the glass display, or at angles around the perimeter of the glass display.