Abstract:
A passive cooling system for an aircraft includes a rotor assembly and a closed heat pipe. The closed heat pipe is carried by the rotor assembly and configured to extract heat energy from a heat source positioned away from the rotor assembly and configured to dissipate the heat energy through the rotor assembly.
Abstract:
A composite assembly has an outer spar component having an outer spar component inner profile, an inner spar component having an inner spar component outer profile substantially complementary to the outer spar component inner profile, and an adhesive disposed between the outer spar component and the inner spar component.
Abstract:
According to one embodiment, a stability augmentation system includes a master linkage, a stability augmentation motor, and three linkages. A first linkage is coupled to the master linkage and operable to receive movements representative of pilot commands from a pilot command system. A second linkage is coupled between the stability augmentation motor and the master linkage and operable to receive movements representative of augmentation commands from the stability augmentation motor. A third linkage is coupled to the master linkage and operable to transmit movements representative of blade position commands to a blade control system in response to the movements representative of pilot commands and the movements representative of augmentation commands.
Abstract:
According to one embodiment, a rotor head includes a yoke, a torque-splitter assembly, and a joint assembly. The torque-splitter assembly includes a spine assembly, a first trunion, and a second trunion. The spline assembly is configured to receive the drive shaft through a first opening. The spline assembly has a first plurality of outer splines oriented in a first direction and a second plurality of outer splines oriented in a second direction different from the first direction. The first trunion is disposed about the first plurality of outer splines. The second trunion is disposed about the second plurality of outer splines.
Abstract:
A quill shaft is configured for transferring torque and accepting misalignments between a fixed gearbox and a rotatable spindle gearbox in a propulsion system of a tiltrotor aircraft, the quill shaft includes a first splined portion configured for coupling to an output gear of the fixed gearbox, and a second splined portion configured for coupling to an input gear of the spindle gearbox. The spindle gearbox includes a rotor mast associated therewith, the spindle gearbox being rotatable so that the tiltrotor aircraft can selectively operate in a helicopter mode and airplane mode.
Abstract:
A cable roller for use in positioning a cable relative to a cable tray or relative to a ceiling of a building includes a mounting channel, a support assembly attached thereto which is moveable relative to the mounting channel, and at least one roller attached to the support assembly for allowing the cable to roll thereover. The support assembly can be moved from a closed position to an open position to allow for the easy removal of the cable from the cable roller.
Abstract:
The cooling system of the present disclosure is configured to promote heat transfer in a gearbox. The system can include a container for housing a gas, the gas having a sufficient percentage of helium so that once the gas is introduced into the gearbox, the helium increases heat transfer from the heat generating components of the gearbox. The method of the present disclosure can include selectively introducing the helium gas into the gearbox.
Abstract:
According to one embodiment, a composite flexure may secure a rotor blade to a yoke in a tiltrotor rotor system. The composite flexure includes a composite body, a first end configured to couple the composite member to the yoke, and a second end configured to couple the composite member to the rotor blade.
Abstract:
A movable seat assembly for a vehicle comprises a predetermined path having an operational location at a first end and an ingress/egress location at a second end, and a seat that travels along the predetermined path between the operational location and the ingress/egress location, wherein the seat has an operational orientation at the operational location and an ingress/egress seat orientation at the ingress/egress location; the ingress/egress seat orientation being substantially angled relative to the operational seat orientation. Another moveable seat assembly for a vehicle comprises a predetermined path having an operational location at a first end, an ingress/egress location at a second end, and a standby location along the path there between; and a seat that travels along the predetermined path between the operational location, the standby location, and the ingress/egress location; wherein the position of the seat is adjustable at the operational location. Another moveable seat assembly for a vehicle comprises a seat coupled to and moveable along at least one track defining a predetermined path between an operational location and an ingress/egress location.
Abstract:
According to some embodiments, a rotorcraft includes a secondary rotor control system located proximate to the empennage of the rotorcraft. The secondary rotor control system includes at least one hydraulic pump and at least one hydraulic actuator. The at least one hydraulic pump is located proximate to the empennage. The at least one hydraulic actuator is located proximate to the empennage and configured to adjust at least one operating characteristic of the at least one secondary rotor blade.