Abstract:
In a photon pair generating apparatus for generating a pair of correlated photons by hyper-parametric scattering, a light-shaping section irradiates an optical resonator with two beams of light of equal wavelength from different directions, and the optical resonator is configured to emit two correlated photons of different wavelengths in one direction as a pair of correlated photons. This makes it possible to provide a photon pair generating apparatus capable of achieving generation of a pair of correlated photons by a simpler configuration.
Abstract:
An object detection method that is provided with a step for extracting a plurality of reference feature vectors related to a local area from an image representing an object, and extracting a plurality of query feature vectors related to the local area from a search query image; a step for matching each query feature vector against each reference feature vector, and calculating a similarity score having a value that is higher the closer the distance between both vectors, the larger the local area for which the query feature vector has been extracted, and the larger the local area for which a matching reference feature vector has been extracted; a step for determining a reference feature vector for which a similarity score is highest as the similar vector for each query feature vector; and a step for acquiring a final score by object associated with the similar vectors, and setting the object returning the highest score as the detection result; and wherein the score is calculated by dividing a sum of the similarity score for each similar vector by the number of feature vectors that have matched the object.
Abstract:
A light receiving device having small dark current and capable of sensing light in the wavelength range of 2.0 μm to 3.0 μm with high sensitivity is provided. The light receiving device has an InP substrate, and a light receiving layer formed by alternately stacking a larger layer formed of GaInNAsSbP mixed crystal having nitrogen content of at most 5% in 5 group, larger lattice constant than that of InP and thickness between hc and 11hc, the critical thickness hc being determined as hc=b(1−ν cos2α){log(hc/b)+1}/8πf(1+ν)cos λ and a smaller layer formed of GaInNAsSbP mixed crystal having nitrogen content of at most 5% in 5 group, smaller lattice constant than that of InP and thickness between hc and 11hc; absolute value of lattice mismatch of the larger layer and the smaller layer to the InP substrate is at least 0.5% and at most 5%; at least one of the layers has absorption edge wavelength of 2.0 μm to 3.0 μm; total thickness of respective layers is 2.0 μm to 4.0 μm; and thickness-weighted average lattice mismatch is set to be at most ±0.2%.
Abstract:
At least one surface of a plate member made of ZnSe has a concave-and-convex structure in which a projecting section and a groove section are formed at a spatial cycle equal to or lower than the wavelength of carbon dioxide laser light to thereby provide a substrate body. On a surface of the concave-and-convex structure, an antireflection film is layered that has a lower refractive index than that of ZnSe to carbon dioxide laser light. By this configuration, the polarization state of transmitted carbon dioxide laser light is converted from a linear polarization to a circular polarization or the like.
Abstract:
A composite photonic structure element comprises a photonic crystal and multilayer films. The photonic crystal is formed by alternately laminating a plurality of sets of an active layer having a nonlinear effect for converting a fundamental wave into a second harmonic and an inactive layer having no nonlinear effect, and is constructed such that the energy of the fundamental wave coincides with a photonic bandgap end. Each of the multilayer films is formed by laminating a plurality of sets of two kinds of thin films having different refractive indexes and reflects the fundamental wave. The multilayer films are connected to both ends of the photonic crystal. The fundamental wave enters one of end faces and is reciprocally reflected between resonators having the multilayer films, so that the intensity of the fundamental wave is enhanced within the photonic crystal. The fundamental wave is converted into a second harmonic in the active layer, and the second harmonic is taken out from the other end face.
Abstract:
A polysaccharide comprising galactose, glucose, rhamnose, and pyruvic acid as constituents, wherein the galactose, glucose, and rhamnose are contained in a molar ratio of 4:2:1, and the pyruvic acid is contained in an amount of 4 to 7 wt %. The polysaccharide can be obtained by culturing Bifidobacterium longum JBL05 (NITE BP-82) under anaerobic conditions.
Abstract:
CD166 is a cell adhesion molecule belonging to an immunoglobulin superfamily that is expressed in an excessive amount on the tumor surface. If an monoclonal antibody specifically binding to the CD166 is obtained, it becomes possible to suppress growth of tumor cells, detect the cells, and supply a therapeutic drug thereto specifically. However, because the CD166 proteins are very similar to each other among mammals, it was not possible to obtain an antibody to human CD166, by immunizing, for example, mice with the human CD166.The antibody was prepared by immunizing mice with a purified avian CD166 protein. The antibody was found to be adsorbed on human and mouse CD166 proteins in vitro as well as in vivo and to have an action to suppress tumor growth in mice.
Abstract:
This invention provides a microreactor comprising a microchamber provided with a raw material introduction port and a product discharge port; wherein solid catalysts are aligned in a line in the longitudinal direction of the microchamber to fill the microchamber.
Abstract:
A neutron detector includes a plurality of neutron detecting element sections, each of the neutron detecting element sections having; a superconducting element including a substrate having at least one of surfaces thereof formed of a dielectric material, a strip line of the superconducting material formed on the surface and electrodes formed at opposed ends of the strip line, resistance determining sections for determining generation of heat resulting from a nuclear reaction between a superconducting element in the strip line and neutrons, through detection of change in a resistance value of said strip line, heat dissipation setting sections provided on a back side portion of the substrate opposite to the surface having the strip line formed thereon, the heat dissipation setting sections setting dissipation characteristics of the heat resulting from the nuclear reaction, and the heat dissipation characteristics being differentiated from each other between/among the neutron detecting element sections.
Abstract:
A frequency offset (CFO) and a direct current component offset (DCO) occur in an OFDM scheme signal. To address this, such a method has been suggested which allows a pilot signal to be mixed with a communicated signal for compensation. However, if the pilot signal has a long duration, then a compensation method without the pilot signal is required to compensate signals during that period. However, no such a method is conventionally available which compensates for both the CFO and DCO without the pilot signal. Using the orthogonality of the OFDM signal, the matrix of a system in which CDO and DCO have occurred is subjected to the singular value decomposition, thereby predetermining the CFO candidate value which allows for demodulating zero from the received signal and an array of numerical values of CFO check data. Then, in a compensation section (17), the received signal is successively multiplied by the numerical values. The typical CFO value provided when the minimum value has been demodulated is outputted as an estimate value for compensation.