Abstract:
A method of transmitting an uplink (UL) control signal of a relay station is provided. The method includes: configuring a UL relay zone for transmitting a signal by the relay station to a base station in a frame; configuring a resource unit including a plurality of symbols and a plurality of subcarriers to allocate the UL control signal in a subframe of the UL relay zone; and transmitting the UL control signal by using the resource unit, wherein, if a transition gap required for switching of signal transmission and reception of the relay station is included in the subframe, the UL control signal is transmitted in the remaining symbols other than the plurality of symbols constituting the resource unit including the transition gap.
Abstract:
A method in which user equipment transmits a signal in a distributed antenna system in which a plurality of antennas is distributed in a cell, comprises the following steps: receiving uplink antenna information from a base station; controlling uplink power on the basis of the uplink antenna information; and transmitting an uplink signal on the basis of the uplink power control, wherein the uplink antenna information indicates a receiving antenna of the base station that receives the uplink signal.
Abstract:
A device and method for permuting subcarriers in a subframe which is divided into a plurality of frequency partitions in a wireless mobile communication system is disclosed. The method includes mapping, at a mobile station, physical resource units for localized resource allocation to a frequency partition of the plurality of frequency partitions in units of N_1 number of resource units, and physical resource units for distributed resource allocation to the frequency partition in units of N_d number of resource units, N_1 being different from N_d; and spreading, at the mobile station, subcarriers of the physical resource units for distributed resource allocation across the whole distributed resource allocations.
Abstract:
A method and apparatus of communicating by a relay station a wireless communication system including a relay station is provided. The method include communicating with at least one of a base station and a user equipment through a frequency division duplex (FDD) uplink (UL) frame configured by the base station, the FDD UL frame including a UL relay zone including a plurality of UL subframes and a UL access zone including a plurality of UL subframes. The UL relay zone is a sector used for the relay station to transmit a signal to the base station, and the UL access zone is a sector used for the relay station to receive a signal from the user equipment. The UL relay zone is located before the UL access zone within the FDD UL frame.
Abstract:
Provided are a method and apparatus for transmitting feedback information of a terminal in a multi-node system in which a plurality of antennas are distributed and disposed in a cell. The method comprises the steps of: transmitting first feedback information, indicating a state between a channel and at least one of antennas, to a base station; and transmitting second feedback information, indicating at least one antenna, to the base station.
Abstract:
The present invention relates to allocating a radio resource in a wireless communication system utilizing orthogonal frequency division multiplexing (OFDM). Preferably, the present invention comprises receiving in a mobile station data associated with a radio resource allocation map from a base station, wherein the radio allocation map comprises control parameters for transmitting an uplink channel, wherein the uplink channel comprises at least one OFDM tile comprising a first set of subcarriers associated with representing at least part of an n-bit data payload, and a second set of subcarriers associated with representing at least part of a non-pilot m-bit data payload wherein each subcarrier carries a modulated data, and the first and the second set of subcarriers are exclusive to each other, and transmitting the uplink channel from the mobile station to the base station.
Abstract:
A method of receiving the uplink region avocation information is disclosed. In a broadband wireless access system, in which a mobile terminal receives uplink region allocation information, the present invention includes the steps of receiving an uplink map message from which an uplink map information element (UL-MAP IE) for a ranging region or an uplink bandwidth request region is omitted from a base station and receiving information for a region for a ranging region or uplink bandwidth request using a message periodically transmitted for a control information transmission for an uplink channel. By transmitting uplink region allocation information via a periodically transmitted message, the uplink region allocation information can be efficiently transmitted.
Abstract:
A method for allocating pilot subcarriers in a resource block for a wideband wireless mobile communication system using an orthogonal frequency division multiplexing (OFDMA) modulation is discussed. In this method, pilot subcarriers are allocated in the resource block so that a group of consecutive data subcarriers separated from adjacent other group of consecutive data subcarriers by the pilot subcarriers has even number of subcarriers within an OFDMA symbol.
Abstract:
A method of allocating an uplink radio resource includes transmitting a scheduling request signal for requesting allocation of the uplink radio resource, wherein the scheduling request signal comprises control information, a request of the allocation of the uplink radio resource is represented by transmitting the scheduling request signal and the control information is represented by a value of the scheduling request signal, and receiving a scheduling grant message in response to the scheduling request signal.
Abstract:
A method for transmitting control messages is disclosed. The method includes grouping a plurality of control messages for at least one user equipment based on at least one criteria of whether or not uplink ACK/NACK channel indexes are allowed to be implicitly used in the control messages, whether or not the user equipment corresponding to the control messages is able to implicitly use the uplink ACK/NACK channel indexes, sizes of Information Elements (IEs) of the control messages, whether or not the control messages are segmented into a predetermined number of subblocks, MCS levels applied to the control messages, sizes of allocated IEs of the control messages after applying the MCS levels, and frequency partitions in which the IEs of the control messages are present, and transmitting the grouped control messages. The control messages included in each of the groups generated by grouping are equal in at said least one criteria.