Abstract:
A method and circuit for providing a playback signal which is compensated for time delay. The circuit includes a time delay compensator for detecting a time difference between outputs of a photodetector and temporally matching part of the outputs of the photodetector and another part of the outputs of the photodetector, between which the time difference occurs, to compensate for time delay between different outputs of the photodetector, and an operational unit for summing the part of the outputs of the photodetector, which is compensated for the time delay, and the other part of the outputs of the photodetector to provide a playback signal. Accordingly, the circuit compensates for the time delay between the outputs of the photodetector, thereby increasing the degree of modulation of the data playback signal. In addition, the circuit maximumly suppresses the distortion or degradation of the signal and minimizes the occurrence of errors in the playback signal, thereby improving the reliability of the playback signal.
Abstract:
An apparatus for and a method of detecting a defocus error signal. First, second and third light receiving regions of a photodetector are arranged in a radial direction of a recording medium to independently perform photoelectric conversion with respect to incident light which is reflected/diffracted by the recording medium. A subtractor subtracts a sum signal of detection signals from the first and third light receiving regions and a detection signal of the second light receiving region to output a defocus error signal, to detect defocus and/or a change in thickness of the recording medium. The defocus error signal and a push-pull tracking error signal are compared in a state in which a predetermined amount of defocus is applied to a light spot to detect a seek direction of the recording medium having a land/groove structure.
Abstract:
A method and apparatus for tracking error detection in an optical disk reproduction system. The tracking error detecting apparatus generates a tracking error signal as a difference signal of optical detection signals generated by more than two optical detectors positioned along a diagonal line from a track center and includes binarizers which binarize each output of the optical detectors, phase locked loops (PLLs) which generate respective clock signals synchronized with the outputs of each of the binarizers, a phase difference detector which detects a phase difference between the synchronized signals output from the PLLs, and low-pass filters which filter the output of the phase difference detector to output the result as the tracking error signal. The tracking error detecting apparatus generates a tracking error signal which is not dependent on the lengths of pits or marks recorded on an optical disk, enhancing the reliability of the tracking error signal.
Abstract:
A physical identification data (PID) addressing method using a wobble signal, a wobble address encoding circuit, a method and circuit for detecting the wobble address and a recording medium therefor. Groove tracks are classified into odd groove tracks and even groove tracks. Address information indicating physical identification information is phase modulated using wobble signals having a predetermined phase difference between two adjacent groove tracks, and recorded in each groove track so that address information modulated using the wobble signals having the phase difference of 90° between adjacent two groove tracks can be a quadrature phase shift keying (QPSK) signal. Accordingly, a larger amount of data can be recorded on the recording medium, and since an interval in which a wobble signal disappears is not caused, recovery of a wobble clock signal can be advantageously performed.
Abstract:
A tracking error signal detecting apparatus with improvement in offset due to gain characteristics and/or a difference in the depth between pits by providing an improved sectioning structure of an eight-sectional photodetector having inner and outer sectional plates, the radial widths of which vary along the tangential direction from the center of the photodetector, and a reproduction signal detecting apparatus with reduced crosstalk noise. The tracking error signal detecting apparatus can allow accurate tracking control in a high-density recording medium having relatively narrow tracks. Also, the reproduction signal detecting apparatus can correct signal distortion due to a difference between phase characteristics of detection signals of inner and outer sectional plates of a photodetector even during reproduction of an information signal from a high-density recording medium having relatively narrow tracks, thereby detecting an improved reproduction signal with greatly reduced crosstalk.
Abstract:
A disc reproduction apparatus and method to reproduce an optical disc using a constant linear velocity (CLV) method. The disc reproduction apparatus includes an equalizer to receive a signal read from the optical disc and equalizing the received signal according to an equalization control signal, and a wide-capture range phase-locked loop (wide PLL) to perform a phase lock operation with regard to the received equalized signal based on a phase lock control signal. An automatic adjuster selects one of predetermined phase lock control value, according to a type of an optical disc to be used and reproduction velocity determined during initial operation, and a desired target position to read the data from the optical disc, and generates a phase lock control signal having the selected value. A correction unit selects one of a predetermined first equalization control value and a second equalization control value which is generated by the wide PLL and relates to a phase lock operation, according to the desired target position, and generates an equalization control signal having the selected equalization control value. Accordingly, the disc reproduction apparatus optimizes the characteristics of the equalizer, in the case of reproducing data from a compact disc (CD), a digital video disc (DVD), etc., at various reproduction velocities, using a constant linear velocity method and a wide-capture range phase-locked loop.