METHOD FOR MEMS DEVICE FABRICATION AND DEVICE FORMED
    51.
    发明申请
    METHOD FOR MEMS DEVICE FABRICATION AND DEVICE FORMED 有权
    用于MEMS器件制造的方法和形成的器件

    公开(公告)号:US20130299926A1

    公开(公告)日:2013-11-14

    申请号:US13946479

    申请日:2013-07-19

    Abstract: The present invention generally relates to methods for producing MEMS or NEMS devices and the devices themselves. A thin layer of a material having a lower recombination coefficient as compared to the cantilever structure may be deposited over the cantilever structure, the RF electrode and the pull-off electrode. The thin layer permits the etching gas introduced to the cavity to decrease the overall etchant recombination rate within the cavity and thus, increase the etching rate of the sacrificial material within the cavity. The etchant itself may be introduced through an opening in the encapsulating layer that is linearly aligned with the anchor portion of the cantilever structure so that the topmost layer of sacrificial material is etched first. Thereafter, sealing material may seal the cavity and extend into the cavity all the way to the anchor portion to provide additional strength to the anchor portion.

    Abstract translation: 本发明一般涉及用于生产MEMS或NEMS装置和装置本身的方法。 与悬臂结构相比,具有较低复合系数的材料的薄层可以沉积在悬臂结构,RF电极和拉出电极上。 薄层允许引入空腔的蚀刻气体降低空腔内的整体蚀刻剂复合速率,从而提高空腔内的牺牲材料的蚀刻速率。 蚀刻剂本身可以通过与悬臂结构的锚固部分线性对准的封装层中的开口引入,使得首先蚀刻最顶层的牺牲材料。 此后,密封材料可以密封空腔并且一直延伸到空腔中,以锚定部分,以向锚固部分提供额外的强度。

    Multi-resonant antenna structure
    55.
    发明授权

    公开(公告)号:US10714812B2

    公开(公告)日:2020-07-14

    申请号:US16342935

    申请日:2017-10-18

    Abstract: The present disclosure generally relates to any device capable of wireless communication, such as a mobile telephone or wearable device, having one or more antennas. The antenna has a structure with multiple resonances to cover all commercial wireless communications bands from a single antenna with one feed connection to the main radio system. The antenna is usable where there are two highly efficient, closely spaced resonances in the lower part of the frequency band. One of those resonances can be adjusted in real time by using a variable reactance attached to the radiator while the other resonance is fixed.

    MEMS RF-SWITCH WITH NEAR-ZERO IMPACT LANDING
    56.
    发明申请

    公开(公告)号:US20200185176A1

    公开(公告)日:2020-06-11

    申请号:US16343912

    申请日:2017-09-14

    Abstract: The present disclosure generally relates to the design of a MEMS ohmic switch which provides for a low-impact landing of the MEMS device movable plate on the RF contact and a high restoring force for breaking the contacts to improve the lifetime of the switch. The switch has at least one contact electrode disposed off-center of the switch device and also has a secondary landing post disposed near the center of the switch device. The secondary landing post extends to a greater height above the substrate as compared to the RF contact of the contact electrode so that the movable plate contacts the secondary landing post first and then gently lands on the RF contact. Upon release, the movable plate will disengage from the RF contact prior to disengaging from the secondary landing post and have a longer lifetime due to the high restoring force.

Patent Agency Ranking