Abstract:
A magnetic coupling device includes a magnetic flywheel unit including a flywheel and multiple first magnets equiangularly spaced around the periphery of the flywheel to form a first annular magnetic series with the same pole facing toward the radial outer side of the flywheel, and a magnetic coupling unit including a plate body rotatably mounted to the periphery of the flywheel, a rotating shaft mounted to the center of axis of the plate body, multiple second magnets and third magnets alternatively mounted on the plate body around the rotating shaft to create a second annular magnetic series that is magnetically coupled to the first annular magnetic series. Further, a magnetoresistive ring frame is mounted to the periphery of the flywheel for movement along the axial direction of the flywheel to create a magnetic coupling control device.
Abstract:
A timestamp-based audio and video processing method and a system thereof are provided. The method is adapted to an electronic device having an image capturing device and an audio input device and includes the following steps. First, an image signal and an audio signal are extracted within a same time interval by respectively using the image capturing device and the audio input device so as to generate video data and audio data, and the time interval is converted to timestamp data, where the video data includes a single video frame with a variable file size, the audio data includes multiple audio files with a fixed file size. Next, the video data, the audio data, and the timestamp data are integrated into transmission data.
Abstract:
A magnetic control method for controlling the magnetic damping force to the flywheel of the exercise equipment includes a magnetic control system having a control member and a magnetic array set. At least two track rails are installed outside of flywheel and parallel to the axle of flywheel. The magnetic array set is installed on the at least two track rails and has the consistent gap to flywheel. The control member drives and controls the magnetic array set to move co-axially to the axle and parallelly to the cylindrical surface of flywheel, along the at least two track rails to adjust the magnetic damping force to the flywheel. The overlapped area between the magnetic array and the cylindrical surface of flywheel is varied by control member to move the magnetic array set. So as the relationship between the magnetic damping force and the moving distance of the magnetic array set is linear. Thus the control member can be linear setting to build.
Abstract:
A wireless network receiver includes a circuit board and a connector structure. The connector structure is fixed on the circuit board, and the connector structure includes a connector and an antenna. The antenna, crossing the circuit board, and the connector are integrally formed with as a whole. The antenna includes a feeding connecting member, a horizontal radiator, a vertical radiator and a grounding connecting member. The horizontal radiator generates a horizontally polarized wave and is connected to the feeding connecting member. The vertical radiator generates a vertically polarized wave and is connected to the horizontal radiator. The grounding connecting member connects the horizontal radiator to the connector.
Abstract:
A high-efficiency high step-up ratio direct current converter with an interleaved soft-switching mechanism is provided. The direct current converter includes a voltage-multiplier circuit and an active clamping circuit. The voltage-multiplier circuit includes two isolating transformers, two main switches disposed on a primary side of the two isolating transformers, four diodes disposed on a secondary side of the two isolating transformers and four capacitors disposed on the secondary side of two isolating transformers, configured to boost a voltage of a direct-current power to a desired voltage value. The active clamping circuit, electrically connected to the voltage-multiplier circuit, includes two active clamp switches and a clamp capacitor to lower a voltage surge of the two main switches so that the two main switches and the two active clamp switches can be soft switched on.
Abstract:
Moenomycin inhibits bacterial growth by clocking the transglycosylase activity of class A penicillin-binding proteins (PBPs), which are key enzymes in bacterial cell wall synthesis. The binding affinities of moenomycin A with various truncated PBPs were compared showing that the transmembrane domain is important for moenomycin binding. Full-length class-A PBPs from 16 bacterial species were produced, and their binding activities showed a correlation with the antimicrobial activity of moenomycin against Enterococcus faecalis and Staphylococcus aureus. Moreover, a fluorescence anisotropy-based high-throughput assay was developed and used successfully for identification of transglycosylase inhibitors.
Abstract:
A non-volatile memory and a manufacturing method thereof are provided. A first oxide layer having a protrusion is formed on a substrate. A pair of doped regions is formed in the substrate at two sides of the protrusion. A pair of charge storage spacers is formed on the sidewalls of the protrusion. A second oxide layer is formed on the first oxide layer and the charge storage spacers. A conductive layer is formed on the second oxide layer.
Abstract:
An inverter with soft switching is used for a high step-up ratio and a high conversion efficiency. The inverter includes an isolation voltage-quadrupling DC converter and an AC selecting switch. The isolation voltage-quadrupling DC converter includes an active clamping circuit. By a front-stage converter circuit, a continuous half-sine-wave current is generated. By a rear-stage AC selecting switch, the half-sine-wave current is turned into a sine-wave current. Thus, electricity may be supplied to an AC load or the grid. The circuit is protected by isolating the low-voltage side from the high-voltage side. The conversion efficiency is high. The leakage inductance is low. The switch stress is low. The inverter is durable and reliable. Hence, the inverter is suitable for use in a photovoltaic system to increase the total conversion efficiency.
Abstract:
A battery ejecting structure is applied to a portable electronic device which comprises a housing and a battery. The battery ejecting structure comprises an ejecting element, a cover, a pushing element and an elastic element. The ejecting element is movably located in the container of the housing; the cover is connected pivotally to the housing and covers the container to be a closed state, and the cover restricts the ejecting element to move via a blocking element; the pushing element is located in the housing, and the fixed member of the ejecting element is connected to the pushing element through the housing. Wherein when the cover is rotated relative to the housing to form an open state, the blocking element disengages from the container, and the pushing element is moved by an elastic restoring force of the elastic element to unlock the battery.
Abstract:
An antenna with electromagnetic interference (EMI) shelter is disclosed, which comprises: an EMI shelter, mounted on a substrate while covering the same; a radiation unit; an induction current steering unit, disposed at a position between the EMI shelter and the radiation unit; and a signal feed-in unit, electrically connected with the radiation unit; wherein, the induction current generated by the radiation unit when it is activating is guided to the EMI shelter through the guidance of the induction current steering unit, and then to be feed into a ground connection (GND), thereby, preventing the operation of radio circuit elements that are mounted on the substrate from being interfered by the electric wave resulting from the induction current. With the aforesaid configuration, not only the EMI effect can be significantly suppressed and the overall manufacturing cost of the antenna can be effectively reduced, but also the signal transmission efficiency is improved.