Abstract:
An downstream plasma boundary layer shielding system includes film cooling apertures disposed through a wall having cold and hot surfaces and angled in a downstream direction from a cold surface of the wall to an outer hot surface of the wall. A plasma generator located downstream of the film cooling apertures is used for producing a plasma extending downstream over the film cooling apertures. Each plasma generator includes inner and outer electrodes separated by a dielectric material disposed within a groove in the outer hot surface. The wall may be part of a hollow airfoil or an annular combustor or exhaust liner. A method for operating the downstream plasma boundary layer shielding system includes forming a plasma extending in the downstream direction over the film cooling apertures along the outer hot surface of the wall. The method may further include operating the plasma generator in steady state or unsteady modes.
Abstract:
A method for cooling a shroud segment of a gas turbine engine includes providing a turbine shroud assembly including a shroud segment having a leading edge defining a forward face. A turbine nozzle is coupled to the turbine shroud assembly such that a gap is defined between an aft face of an outer band of the turbine nozzle and the forward face, wherein a lip formed on the aft face is positioned radially inwardly with respect to the gap and extends substantially axially downstream from the gap. Cooling air is directed into the gap. Cooling air exiting the gap impinges against the lip. Post impingement cooling air is directed at the forward face to facilitate forming a film cooling layer on the shroud segment. The film cooling layer is shielded from combustion gases flowing through the gas turbine engine.
Abstract:
A gas turbine engine is disclosed, comprising a compressor having a circumferential row of blades, a casing surrounding the tips of the blades, located radially apart from the tips of the blades and at least one plasma generator located on the casing. The plasma generator comprises a first electrode and a second electrode separated by a dielectric material. The gas turbine engine further comprises an engine control system which controls the operation of the plasma generator such that the stable operating range of the compressor is increased.
Abstract:
A duplex turbine nozzle includes a row of different first and second vanes alternating circumferentially between radially outer and inner bands in vane doublets having axial splitlines therebetween. The vanes have opposite pressure and suction sides spaced apart in each doublet to define an inboard flow passage therebetween, and corresponding outboard flow passages between doublets. The vanes have different patterns of film cooling holes with larger cooling flow density along the outboard passages than along the inboard passages.
Abstract:
A process for the formation of positive features on the surface of a turbine shroud component is described. The process involves applying a feature-forming material to a selected portion of the component surface with a laser consolidation apparatus, according to a pre-selected shape and size for the positive features. A gas turbine engine, comprising a shroud component which contains positive features formed according to embodiments of this process, represents another embodiment of this invention. Methods for modifying the shape of at least one positive feature on a surface of a shroud component are also described.
Abstract:
A method for evaluating the thermal exposure of a selected metal component which has been exposed to changing temperature conditions is described. The voltage distribution on a surface of the metal component, or on a metallic layer which lies over the component, is first obtained. The voltage distribution usually results from a compositional change in the metal component. The voltage distribution is then compared to a thermal exposure-voltage model which expresses voltage distribution as a function of exposure time and exposure temperature for a reference standard corresponding to the metal component. In this manner, the thermal exposure of the selected component can be obtained. A related device for evaluating the thermal exposure of a selected metal component is also described.
Abstract:
A method for assembling a gas turbine engine is provided. The method comprises coupling a first turbine nozzle within the engine, coupling a second turbine nozzle circumferentially adjacent the first turbine nozzle such that a gap is defined between the first and second turbine nozzles and providing at least one spline seal including a substantially planar body. The method also comprises forming at least one catch to extend outward from the body portion of the at least one spline seal, and inserting the at least one spline seal into a slot defined in at least one of the first and second turbine nozzles to facilitate reducing leakage through said gap, such that a portion of the at least one spline seal is received within a recess defined within the turbine nozzle slot to facilitate retaining the at least one spline seal within the turbine nozzle slot.
Abstract:
A method of assembling a gas turbine engine is provided. The method includes coupling at least one turbine nozzle segment within the gas turbine engine. The at least one turbine nozzle segment includes at least one airfoil vane extending between an inner band and an outer band that includes an aft flange and a radial inner surface. The method also includes coupling at least one turbine shroud segment downstream from the at least one turbine nozzle segment, wherein the at least one turbine shroud segment includes a leading edge and a radial inner surface, coupling a cooling fluid source in flow communication with the at least one turbine nozzle segment such that cooling fluid channeled to each turbine nozzle outer band aft flange is directed at an oblique discharge angle towards the leading edge of the at least one turbine shroud segment, and channeling the cooling fluid through at least a first group of cooling openings having a larger aggregate cross-sectional area and a second group of cooling openings having a smaller aggregate cross-sectional area to facilitate preferential cooling of the turbine shroud.
Abstract:
A turbofan engine includes a fan, compressor, combustor, high pressure turbine, and low pressure turbine joined in serial flow communication. The high pressure turbine includes two stages of rotor blades to effect corresponding exit swirl in the combustion gases discharged therefrom. A transition duct includes fairings extending between platforms for channeling the combustion gases to the low pressure turbine with corresponding swirl. First stage rotor blades in the low pressure turbine are oriented oppositely to the rotor blades in the high pressure turbine for counterrotation.
Abstract:
An upstream plasma boundary layer shielding system includes film cooling apertures disposed through a wall having cold and hot surfaces and angled in a downstream direction from a cold surface of the wall to an outer hot surface of the wall. A plasma generator located upstream of the film cooling apertures is used for producing a plasma extending downstream over the film cooling apertures. Each plasma generator includes inner and outer electrodes separated by a dielectric material disposed within a groove in the outer hot surface. The wall may be part of a hollow airfoil or an annular combustor or exhaust liner. A method for operating the upstream plasma boundary layer shielding system includes forming a plasma extending in the downstream direction over the film cooling apertures along the outer hot surface of the wall. The method may further include operating the plasma generator in steady state or unsteady modes.