Abstract:
Sulfonate salts have the formula: CF3—CH(OCOR)—CF2SO3−M+ wherein R is C1-C20 alkyl or C6-C14 aryl, and M+ is a lithium, sodium, potassium, ammonium or tetramethylammonium ion. Onium salts, oximesulfonates and sulfonyloxyimides and other compounds derived from these sulfonate salts are effective photoacid generators in chemically amplified resist compositions.
Abstract:
A chemical amplification type resist composition comprising a specific sulfonyldiazomethane containing long-chain alkoxyl groups has many advantages including improved resolution, improved focus latitude, minimized line width variation or shape degradation even on long-term PED, minimized debris left after coating, development and peeling, and improved pattern profile after development and is thus suited for microfabrication.
Abstract:
Chemically amplified resist compositions comprising nitrogen-containing organic compounds having an aromatic carboxylic acid ester structure have an excellent resolution and provide a precise pattern profile and are useful in microfabrication using electron beams or deep-UV light.
Abstract:
Sulfonyldiazomethane compounds containing a long-chain alkylcyclohexyl group are novel and useful as photoacid generators. Chemical amplification type resist compositions comprising the same are suited for microfabrication because of many advantages including improved resolution, improved focus latitude, minimized line width variation or shape degradation even on long-term PED, minimized debris left after coating, development and peeling, and improved pattern profile after development.
Abstract:
A chemical amplification type resist composition contains as a photoacid generator a sulfonyldiazomethane compound of formula (1) wherein R is H or C1-4 alkyl or alkoxy, G is SO2 or CO, R3 is C1-10 alkyl or C6-14 aryl, p is 1 or 2, q is 0 or 1, p+q=2, n is 0 or 1, m is 3 to 11, and k is 0 to 4. The composition is suited for microfabrication, especially by deep UV lithography because of many advantages including improved resolution and improved pattern profile after development.