Abstract:
A subscriber dynamically establishes a peer-to-peer session from a source subscriber to a destination subscriber across a switched virtual circuit (SVC). A signaling (control) connection is established from the source subscriber to a server, and a connection request is sent via the signaling (control) connection to the server requesting establishment of the SVC to the destination subscriber. In response, a database is queried for information about a source switch associated with the source subscriber and a destination switch associated with the destination subscriber. Subsequently, the connection request is forwarded to a proxy signaling agent, and the proxy signaling agent signals the source switch and the destination switch to dynamically establish the SVC connection from the source switch to the destination switch. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
Abstract:
A method to deliver video content is disclosed and includes sending a bandwidth change request from a set-top box device associated with a home network to a server via an Internet Protocol Television (IPTV) access network. The bandwidth change request includes a requested bandwidth change event and an upper limit overhead bandwidth factor. The method also includes receiving video packets related to the bandwidth change event from the server at an increased rate corresponding to the upper limit overhead bandwidth factor.
Abstract:
The present invention relates generally to a data communication system, a virtual interworking trunk interface within a device to form a universal virtual private network, and methods of operating a virtual private network. In a particular embodiment, the data communication system includes a first portion of a virtual private network, a second portion of the virtual private network, a virtual switch instance associated with the first portion of the virtual private network, a virtual router instance associated with the second portion of the virtual private network, and a virtual interworking trunk interface coupled to the virtual switch instance and to the virtual router instance.
Abstract:
A method is disclosed that includes receiving a data packet at a first video distribution hub via a first link. The method also includes determining whether a second link has failed, wherein the first video distribution hub communicates with a second video distribution hub via a primary network path that includes the second link. When the second link has failed, a backup network path to send the data packet, or a copy thereof, to the second video distribution hub, is determined based on data stored at the first video distribution hub. The method also includes sending the data packet, or the copy thereof, to the second video distribution hub via the backup network path, wherein the backup network path does not include the second link.
Abstract:
The disclosed method and system provides a new service provision interface that allows operator use without requiring many of the specific technical network details, such as VRF, RT, SOO, route redistribution, etc. Further, the translation from a customer's requirements (including both VPN topology membership requirement and L2, L3 requirement from customer) into technical network configuration commands are handled using an automated method that is transparent to the operator. In a particular illustrative embodiment of this patent disclosure, a high level table with reduced technical detail is generated by an operator and an automated provisioning system, without operator visibility or required operator interaction, creates intermediate data including network specific technical information in an automated process to generate a deployable network topology including VRF and RT assignments for use in network provisioning.