Abstract:
A mobile terminal receives a class identifier and receives a broadcast message with a backoff period definition for multiple classes of mobile terminals. The mobile terminal applies the class identifier to the backoff period definition to determine a backoff interval for the mobile terminal. The mobile terminal sends, to a base station, a radio resource control (RRC) connection request using the calculated backoff interval. Different backoff intervals are assigned to different classes of mobile terminals to control network access congestion at the base station.
Abstract:
A method, performed by a fixed wireless router device, may include receiving a packet from a Long Term Evolution network, where the packet is associated with a particular Long Term Evolution Quality of Service class and mapping the particular Long Term Evolution Quality of Service class to a particular Differentiated Services Core Point Quality of Service class. The method may further include assigning a Differentiated Services Core Point Quality of Service class to the packet based on the particular Differentiated Services Core Point Quality of Service class and forwarding the packet to particular device associated with a customer premises network serviced by the fixed wireless router device, based on a priority associated with the assigned Differentiated Services Core Point Quality of Service class.
Abstract:
A device receives a packet provided in a wireless access network, and determines whether the packet is a payload packet or an acknowledgment (Ack) packet. The device also allocates, when the packet is an acknowledgement packet, the acknowledgment packet to an expedited priority queue, and allocates, when the packet is a payload packet, the payload packet to a regular priority queue. The device further delivers one or more acknowledgment packets provided in the expedited priority queue prior to delivering one or more payload packets provided in the regular priority queue.
Abstract:
A device receives, from a fixed user device connected to a wireless network, a request for video content in a particular format, and requests, from a content provider, the requested video content in multiple formats. The device also receives, from the content provider, the video content in multiple formats, and stores the video content in the multiple formats, where the video content in the multiple formats is provided locally to the wireless network.
Abstract:
A device may receive a network access request and perform at least one of signal strength measurements of a first wireless network and a second wireless network, a determination of a level of congestion of the first wireless network and a level of congestion of the second wireless network, or a determination of an access point name (APN) type associated with the network access request. The device may select one of the first wireless network or the second wireless network based on the performance of the at least one of the signal strength measurements, the determination of the level of congestion of the first wireless network and the level of congestion of the second wireless network, or the determination of the APN type associated with the network access request. The device may further connect to the selected one of the first wireless network or the second wireless network.
Abstract:
A device receives an attachment request from a user device, and determines whether the user device is a stationary device based on the attachment request. The device further establishes a connection between the user device and a network by using local components associated with the device when the user device is the stationary device. The local components perform functions performed by one or more of a remote mobility management entity (MME) device, a remote serving gateway (SGW), or a remote packet data network (PDN) gateway (PGW) associated with the device. The device also transmits data from the network to the user device via the local components associated with the device after establishing the connection between the user device and the network.
Abstract:
A system may receive, from a user device, a request to receive content via a first base station, where the content was previously being received, as multicast content, via a second base station; determine, in response to the request, whether the first base station can process multicast content; transmit a copy of the content, to the user device via the first base station, as multicast content, based on a determination that the first base station can process multicast content; and transmit the content, to the user device via the first base station, as unicast content, based on a determination that the first base station cannot process multicast content.
Abstract:
A system may receive a connection request, from a user device, that includes information identifying a particular application; identify that the particular application is associated with a group of classes of traffic; establish a group of bearer channels that are associated with the group of classes of traffic, the group of bearer channels being associated with a group of different levels of quality of service (“QoS”); process, via a first bearer channel and according to a first level of QoS, first traffic associated with the user device and the particular application; and process, via a second bearer channel of the group of bearer channels, according to a second level of QoS, second traffic associated with the user device and the particular application, the second bearer channel being different from the first bearer channel, and the second level of QoS being different from the first level of QoS.
Abstract:
A device may receive a packet, may identify a first packet characteristic associated with the packet, may identify a second packet characteristic associated with the packet, and may store information associated with the packet in a queue based on the first packet characteristic and the second packet characteristic. The device may service the packet from the queue based on an automatic repeat requester (“ARQ”) mechanism. The ARQ mechanism may specify a maximum quantity of times that the packet should be serviced before being dropped, when a packet acknowledgement is not received, may specify a time period between packet service attempts, and may be based on the first packet characteristic and the second packet characteristic.
Abstract:
Video content may be delivered in a wireless network based on network load information relating to radio interfaces for the wireless network. A method may include receiving a request, from a set-top box, for video content from the set-top box to the wireless network and determining, based on the load information, whether a portion of the wireless network corresponding to the set-top box is in a first state or a second state. The network may further include transmitting the video content when the portion of the network corresponding to the set-top box is in the first state and delaying transmission of the video content when the portion of the network corresponding to the set-top box is in the second state, until the portion of the network corresponding to the set-top box enters the first state.