Abstract:
An active matrix array structure, disposed on a substrate, includes a first patterned conductive layer, a patterned gate insulating layer, a patterned semiconductor layer, a second patterned conductive layer, a patterned overcoat layer and a transparent conductive layer. The patterned gate insulating layer has first openings that expose a part of the first patterned conductive layer. The patterned semiconductor layer is disposed on the patterned gate insulating layer. The second patterned conductive layer is disposed on the patterned semiconductor layer. The patterned overcoat layer has second openings that expose a part of the first patterned conductive layer and a part of the second patterned conductive layer. The transparent conductive layer is completely disposed on the substrate. The transparent conductive layer disposed in the first openings and the second openings is broken off at a position that is in between the substrate and the patterned overcoat layer.
Abstract:
A portable lighting device includes a power source, a controller, and a load. The controller comprises a power input terminal which is electrically connected to the power source via a switch. The load is electrically connected to a power output terminal of the controller and is capable of providing a feedback signal. The controller regulates the power being provided to the load according to the feedback signal and a conduction status of the switch.
Abstract:
A liquid crystal display includes an array substrate, a color filter substrate facing the array substrate, and a liquid crystal layer provided between the array substrate and the color filter substrate. The array substrate includes a driving device, at least one conductive wiring, and a transient voltage suppressor. The driving device includes a driver. The driver has at least one common voltage terminal. The conductive wiring has a connection point and is coupled to the common voltage terminal of the driver. The transient voltage suppressor is coupled to a ground terminal and the connection point, and the connection point is near the common voltage terminal.
Abstract:
A DC/AC inverter and method thereof are disclosed. The DC/AC inverter for driving a load includes a DC power supply for supplying a DC input voltage, a converter circuit coupled to the DC power supply which converts the DC input voltage into an AC signal used to drive the load, and a control circuit coupled to the converter circuit which sets a frequency of the AC signal. The control circuit is further capable of operating the DC/AC inverter in a fixed frequency mode and in a variable frequency mode in accordance with the DC input voltage and the load condition.
Abstract:
A pixel structure of a display panel is provided. The pixel structure includes a first storage capacitor formed by a pixel electrode and a common electrode pattern, and a second storage capacitor formed by an electrode pattern and the common electrode pattern. Accordingly, the storage capacitance is greatly improved without sacrificing the aperture ratio, or the aperture ratio is improved by reducing the area of the storage capacitor while the storage capacitance is maintained.
Abstract:
A driving circuit for controlling power of a light source includes a power converter coupled to a power source and the light source, and a dimming controller coupled to the power converter. The power converter can receive power from the power source and provide a regulated power to the light source. The power converter includes a control switch coupled in series with the light source. The dimming controller can monitor a power switch coupled between the power source and the driving circuit, and receive a dimming request signal and a dimming termination signal. The dimming request signal can indicate a first set of operations of the power switch. The dimming termination signal can indicate a second set of operations of the power switch. The dimming controller can continuously adjust the regulated power from the power converter by controlling the control switch if the dimming request signal is received, and can stop adjusting the regulated power from the power converter if the dimming termination signal is received.
Abstract:
A video interworking gateway device, a system and method for implementing a video phone call service are provided, which processes the service when a call object changes if the call is not disconnected. The system includes a video interworking gateway device, a broadband resource device and a bearer connection device. The video interworking gateway device negotiates with a calling H.324 entity about parameters, and connects the calling H.324 entity to the broadband resource device on obtaining negotiation parameters of the calling H.324 entity; the video interworking gateway device negotiates with a called H.324 entity about parameters, obtains negotiation parameters of the called H.324 entity, exchanges the negotiation parameters of the calling H.324 entity and those of the called H.324 entity between the calling H.324 entity and the called H.324 entity, and disconnects the connection between the calling H.324 entity and the broadband resource device.
Abstract:
A pixel structure of a display panel is provided. The pixel structure includes a first storage capacitor formed by a pixel electrode and a common electrode pattern, and a second storage capacitor formed by an electrode pattern and the common electrode pattern. Accordingly, the storage capacitance is greatly improved without sacrificing the aperture ratio, or the aperture ratio is improved by reducing the area of the storage capacitor while the storage capacitance is maintained.
Abstract:
Thermal throttling duty estimation methods for a CPU (Central Processing Unit) in a computer system are provided. The temperature of a CPU is highly related to the CPU performance. CPU temperature data (CPUT) is first acquired. A thermal throttle duty (TTD) is then calculated according to the acquired CPUT. Thereafter, the calculated TTD can be sent to the CPU and the CPU performance is accordingly adjusted.
Abstract:
A method according to one embodiment may include providing power to at least one light source. The method of this embodiment may also include detecting the frequency of at least one vertical synchronization signal, among a plurality of different synchronization signals, and controlling the power to at least one light source based on, at least in part, the detected frequency of at least one vertical synchronization signal. Of course, many alternatives, variations, and modifications are possible without departing from this embodiment.