Abstract:
A poly-phase filter receives inphase input signals I and Ī and quadrature input signals Q and Q, and provides inphase output signals Ilow and Iout and quadrature output signals Qout and Qout. The capacitance of each variable capacitor connected to the terminals providing inphase output signals Iout and Iout is and the capacitance of each variable capacitor connected to the terminals providing quadrature output signals Qout and Qout, are different in value, and preferably by twice a predetermined value. This is because adjustment to the capacitance values may be made to each set of variable capacitors by the predetermined value.
Abstract:
In one embodiment, a regulator circuit for generating a regulated output voltage Vout has an error amplifier using a pair of bipolar transistors at its front end. The error amplifier compares the regulated output voltage to a reference voltage Vref. A precision current source draws a first current through a user-selected set resistance to generate the desired Vref. The regulator circuit controls a power stage to cause Vout to be equal to Vref. The base current into one of the bipolar transistors normally distorts the current through the set resistance. A base current compensation circuit is coupled to the current source to adjust the first current by a value equal to the base current to offset the base current. Therefore, Vref is not affected by the base current. The error amplifier may be in a linear regulator or a switching regulator. The compensation circuit may be used in other applications.
Abstract:
A monitoring device includes an input terminal configured to receive an input signal from a battery system management (BSM); an output terminal configured to output cell parameters used to determine an open cell voltage associated with one of a plurality of cells within the battery stack connected to the monitoring circuit based on the input signal received from the BSM; a processor; and a memory storing executable instructions for causing the processor to: measure a cell voltage associated with the one of the plurality of cells within the battery stack; measure a voltage drop associated with a measured balancing current; calculate the open cell voltage by adjusting the measured cell voltage based on the measured voltage drop; and balance the battery stack based on the calculated open cell voltage, wherein balancing and calculating the open cell voltage are performed concurrently.
Abstract:
A novel readdressing circuit is provided for supporting data communications over a data line and a clock line between at least one master device and multiple slave devices. For example, the master device and the multiple slave devices may be configured to communicate over an I2C bus including the data line and the clock line. The readdressing circuit has a data input node for receiving a data signal transferred over the data line and including an address word produced by the master device, and a data output node coupled to the multiple slave devices. The readdressing circuit also includes an address generator and an address transmit detections circuit. The address generator is configured for storing a multi-bit fixed offset value. The address generator is responsive to the address word at the data input node for generating multiple unique addresses for the multiple slave devices. The address transmit detection circuit is configured for enabling the address generator to generate the multiple unique addresses at the data output node when the address word is detected at the data input node, and for preventing an output signal of the address generator from being supplied to the data output node when no address word is detected at the data input node.
Abstract:
This invention uses new switching regulator structures to split single magnetic loops into multiple magnetic loops, with linked opposing magnetic fields, to cause a cancelling effect, resulting in a much lower overall magnetic field. This results in lower EMI. In one embodiment, synchronously switched transistors are divided up into parallel topside transistors and parallel bottomside transistors. The topside transistors are positioned to oppose the bottomside transistors, and bypass capacitors are connected between the pairs to create a plurality of current loops. The components are arranged to form a mirror image of the various current loops so that the resulting magnetic fields are in opposite directions and substantially cancel each other out. Creating opposite current loops may also be achieved by forming the conductors and components in a figure 8 pattern with a cross-over point.
Abstract:
This invention uses new switching regulator structures to split single magnetic loops into multiple magnetic loops, with linked opposing magnetic fields, to cause a cancelling effect, resulting in a much lower overall magnetic field. This results in lower EMI. In one embodiment, synchronously switched transistors are divided up into parallel topside transistors and parallel bottomside transistors. The topside transistors are positioned to oppose the bottomside transistors, and bypass capacitors are connected between the pairs to create a plurality of current loops. The components are arranged to form a mirror image of the various current loops so that the resulting magnetic fields are in opposite directions and substantially cancel each other out. Creating opposite current loops may also be achieved by forming the conductors and components in a FIG. 8 pattern with a cross-over point.
Abstract:
Switching regulator methods and systems are provided for supplying output current at a regulated voltage level to a load. Upon determining that the output current is not below a predetermined current threshold, the regulator is operated in a continuous mode. The input voltage is monitored. If the input voltage is not below a first input threshold level, the system remains in continuous mode. Otherwise, the system enters a burst mode in which the switch mode power supply is turned OFF, thereby reducing transistor gate charge losses.
Abstract:
An auto-resonant driver for a transmitter inductor drives the inductor at an optimal frequency for maximum efficiency. The transmitter inductor is magnetically coupled, but not physically coupled, to a receiver inductor, and the current generated by the receiver inductor is used to power a load. The system may be used, for example, to remotely charge a battery (as part of the load) or provide power to motors or circuits. A feedback circuit is used to generate the resonant driving frequency. A detector in the transmit side wirelessly detects whether there is sufficient current being generated in the receiver side to achieve regulation by a voltage regulator powering the load. This point is achieved when the transmitter inductor peak voltage suddenly increases as the driving pulse width is ramped up. At that point, the pulse width is held constant for optimal efficiency.
Abstract:
Circuits and methods for converting a signal from analog to digital. A random number generator provides a random number to a memory. The memory is preconfigured to include codes of predetermined digital to analog (DAC) configurations that provide the maximum amount of DAC gradient suppression. At least one Flash reference generation DAC (FRGD) has an input coupled to the memory unit and an output providing a reference voltage level for its respective Flash comparator. The Flash comparators compare the analog input signal to their respective reference voltage and provide a digital output signal based on the comparison.
Abstract:
Circuitry and methods are provided for reducing rise time associated with signals on an open-drain or open-collector signal line. Signal line voltage is monitored to determine if the signal line is being pulled LOW. If the signal line is not being pulled LOW, as indicated by signal line voltage exceeding a threshold level, additional pullup current is provided. The additional current may be provided gradually in relation to the signal line voltage, or may be provided in full whenever voltage exceeds the threshold. Circuitry may also be provided to monitor voltage slew rate on the signal line, and to enable the additional pullup current only when the slew rate exceeds a positive threshold level.