摘要:
A physiological measurement system is disclosed which can take a pulse oximetry signal such as a photoplethysmogram from a patient and then analyse the signal to measure physiological parameters including respiration, pulse, oxygen saturation and movement. The system comprises a pulse oximeter which includes a light emitting device and a photodetector attachable to a subject to obtain a pulse oximetry signal; analogue to digital converter means arranged to convert said pulse oximetry signal into a digital pulse oximetry signal; signal processing means suitable to receive said digital pulse oximetry signal and arranged to decompose that signal by wavelet transform means; feature extraction means arranged to derive physiological information from the decomposed signal; an analyser component arranged to collect information from the feature extraction means; and data output means arranged in communication with the analyser component.
摘要:
A physiological measurement system is disclosed which can take a pulse oximetry signal such as a photoplethysmogram from a patient and then analyse the signal to measure physiological parameters including respiration, pulse, oxygen saturation and movement. The system comprises a pulse oximeter which includes a light emitting device and a photodetector attachable to a subject to obtain a pulse oximetry signal; analogue to digital converter means arranged to convert said pulse oximetry signal into a digital pulse oximetry signal; signal processing means suitable to receive said digital pulse oximetry signal and arranged to decompose that signal by wavelet transform means; feature extraction means arranged to derive physiological information from the decomposed signal; an analyser component arranged to collect information from the feature extraction means; and data output means arranged in communication with the analyser component.
摘要:
According to embodiments, estimated values for a signal transform may be generated using estimated values for the signal. Signal parameters may then be determined based on the estimated signal transform. A first portion of a signal may be obtained. A second portion of the signal may be estimated. The second portion of the signal may correspond to a portion of the that is unknown, that is not yet available and/or that is obscured by noise and/or artifacts. A transform (e.g., a continuous wavelet transform) of both of the signal portions may be performed. One or more parameters corresponding to the signal may then be determined from transformed signal.
摘要:
According to embodiments, systems and methods are provided for filtering a signal. A first reference signal may be generated according to a signal model and a second reference signal may be generated by analyzing a continuous wavelet transform of a signal. The first and second reference signals may then both be applied to an input signal to filter the input signal according to the components of both of the reference signals.
摘要:
Systems and methods are provided for monitoring a correlation between heart rate and blood pressure in a patient. When a characteristic of the correlation exceeds a threshold, a patient status indicator signal is sent to a monitoring device. In some embodiments, the patient status indicator signal indicates a particular medical condition or alerts a care provider to a change in status. In some embodiments, the heart rate signal is used to improve a blood pressure estimate generated by a different signal. In some embodiments, the heart rate, blood pressure and correlation signals are used in a predictive mathematical model to estimate patient status or outcome.
摘要:
Systems and methods are provided for storing event markers. The value of a monitored physiological metric may be monitored and compared to a reference value. A patient monitoring system may compute a difference between a monitored metric and a reference value, and compare the difference to a threshold value to determine whether a physiological event has occurred. Based on the determination, a patient monitoring system may store an event marker, trigger a response, update a metric value, or perform any other suitable function.
摘要:
Systems and methods are provided for storing and recalling metrics associated with physiological signals. It may be determined that the value of a monitored physiological metric corresponds to a stored value. In such cases, a patient monitor may determine that a calibration is not desired. In some cases, a patient monitor may recall calibration parameters associated with the stored value if it determined that the stored value corresponds to the monitored metric value.
摘要:
In some embodiments, systems and methods for identifying a low perfusion condition are provided by transforming a signal using a wavelet transform to generate a scalogram. A pulse band and adjacent marker regions in the scalogram are identified. Characteristics of the marker regions are used to detect the existence of a lower perfusion condition. If such a condition is detected, an event may be triggered, such as an alert or notification.
摘要:
Techniques for the display of a signal with a wavelet transform of that signal in a wavelet transform viewer are disclosed, according to embodiments. According to embodiments, the wavelet transform viewer can display a plot of physiological signals such as a photoplethysmograph (PPG) signal. A portion of the plot of the signal can be selected. A wavelet transform the selected portion of the signal can be calculated and a wavelet plot of the tranformed signal can be displayed simultaneously with that signal. A plot of the selected portion of the signal can also be simultaneously displayed with both the plot of the signal and the wavelet plot.
摘要:
According to embodiments, systems and methods for high-pass filtering a plethysmograph or photoplethysmograph (PPG) signal are disclosed. A sensor or probe may be used to obtain a plethysmograph or PPG signal from a subject. The sensor may be placed at any suitable location on the body, e.g., the forehead, finger, or toe. The PPG signal generated by the sensor may be high-pass filtered to disambiguate certain features of the PPG signal, including one or more characteristic points. The cut-off frequency for the high-pass filter may be greater than 0.75 Hz and less than 15 Hz. The cut-off frequency for the high-pass filter may be selected to be greater than the subject's computed pulse rate. These characteristic points on the filtered PPG signal may be used to compute non-invasive blood pressure measurements continuously or on a periodic basis. For example, the time difference between two or more characteristic points in a high-pass filtered version of the generated PPG signal may be computed. The time difference may be used to compute non-invasive blood pressure measurements continuously or on a periodic basis.