Abstract:
A mobile platform efficiently processes sensor data, including image data, using distributed processing in which latency sensitive operations are performed on the mobile platform, while latency insensitive, but computationally intensive operations are performed on a remote server. The mobile platform acquires sensor data, such as image data, and determines whether there is a trigger event to transmit the sensor data to the server. The trigger event may be a change in the sensor data relative to previously acquired sensor data, e.g., a scene change in an image. When a change is present, the sensor data may be transmitted to the server for processing. The server processes the sensor data and returns information related to the sensor data, such as identification of an object in an image or a reference image or model. The mobile platform may then perform reference based tracking using the identified object or reference image or model.
Abstract:
The present invention discloses a method of isolation, pooling and further culturing of Mesenchymal Stem cells (MSC) for clinical application. Present invention also discloses the method of establishing Master Cell bank, followed by Working Cell Bank from which the final therapeutic composition referred to as Investigational Product/Investigational Medicinal Product comprising of allogenic bone marrow-derived MSC is formulated for clinical applications.
Abstract:
Gluten-degrading proteases derived from insects, including flour beetles, are isolated, and the purified, and recombinant forms can be used to make gluten-containing food safe for patients suffering from gluten intolerance.
Abstract:
The invention relates to a biocompatible, non-biodegradable, and non-toxic polymer of formula (I), comprising of three monomeric units, selected from 1-Vinylpyrrolidne (VP), N-Isopropylactylamide (NIPAM), and ester of Maleic anhydride and Polyethylene glycol (MPEG), cross-linked with a bi-functional vinyl derivative, of high purity and substantially free of respective toxic monomeric contaminants, and a process for preparation thereof. The invention further relates to nanoparticulate pharmaceutical compositions of poorly water-soluble drugs or compounds comprising the polymer of the invention, which are safe, less-toxic and convenient for bedside administration to patients in need thereof. Furthermore, the invention relates to a highly selective method for preparation of nanoparticulate pharmaceutical compositions of poorly water-soluble drugs or compounds.
Abstract:
A system and method in one embodiment includes modules for verifying a digital signature of a Microsoft® ActiveX® control, identifying an executable file of the ActiveX control, authorizing the executable file as an updater configured to enable trust propagation, if the digital signature is from an authorized issuer, and installing the ActiveX control. More specific embodiments include hooking an exported function in the executable file and marking a thread calling the exported function as an updater. Hooking the exported function includes patching the executable function so that when the exported function is called during execution of the executable file, a second function is executed before the exported function is executed. Other embodiments include extracting a cabinet file wrapping the ActiveX control, parsing an information file in the cabinet file, and downloading additional components for installing the ActiveX control.
Abstract:
A novel, commercially viable process for the extraction of high purity (>70%), bioactive furostanolic saponins including protodioscin (>30%), from the seeds of fenugreek (Trigonella foenumgraecum) comprising essentially the steps of powdering of the natural material followed by a first extraction, an ion-exchange chromatographic purification and a second extraction using a novel composite solvent and drying of the product under defined conditions, the entire process being carried out at essentially neutral pH and low temperatures of less than 80° C.
Abstract:
The present invention discloses a novel anti-diabetic composition extracted from fenugreek seeds. The same comprises a furostanolic-saponin-rich fraction (>70%) with approximately 30% protodioscin as one of the bioactive components. Pre-clinical studies in rats indicated significant glucose lowering effect of the fraction (31.5%) as compared to control after two weeks of oral treatment. Clinical studies in human volunteers indicated suitability of a dosage form of 500 mg given once or twice daily as anti-diabetic agent either alone or in combination with standard, synthetic anti-diabetic drugs such as metformin and glipizide in controlling plasma glucose levels.
Abstract:
The present invention discloses a method of isolation, pooling and further culturing of Mesenchymal Stem cells (MSC) for clinical application. Present invention also discloses the method of establishing Master Cell bank, followed by Working Cell Bank from which the final therapeutic composition referred to as Investigational Product/Investigational Medicinal Product comprising of allogenic bone marrow-derived MSC is formulated for clinical applications.
Abstract:
Certain aspects of the present disclosure relate to a method for compressed sensing (CS). The CS is a signal processing concept wherein significantly fewer sensor measurements than that suggested by Shannon/Nyquist sampling theorem can be used to recover signals with arbitrarily fine resolution. In this disclosure, the CS framework is applied for sensor signal processing in order to support low power robust sensors and reliable communication in Body Area Networks (BANs) for healthcare and fitness applications.
Abstract:
Certain aspects of the present disclosure relate to a method for compressed sensing (CS). The CS is a signal processing concept wherein significantly fewer sensor measurements than that suggested by Shannon/Nyquist sampling theorem can be used to recover signals with arbitrarily fine resolution. In this disclosure, the CS framework is applied for sensor signal processing in order to support low power robust sensors and reliable communication in Body Area Networks (BANs) for healthcare and fitness applications.