Abstract:
A low-discharge-voltage high-brightness high-efficiency flat discharge lamp includes: a container; first and second electrodes arranged in the container, the second electrode including a plurality of discharge elements having different respective discharge distances with respect to the first electrode; and at least one discharge delay element respectively electrically connected to at least one of the plurality of discharge elements, each of the at least one discharge delay elements having different delay times. A high-brightness low-discharge-voltage high-efficiency PDP includes: a discharge space; first and second electrodes arranged in the discharge space, the second electrode including a plurality of discharge elements having different discharge distances with respect to the first electrode; and at least one discharge delay element respectively electrically connected to at least one of the discharge elements, each of the at least one discharge delay elements having different delay times. Accordingly, it is possible to initiate a discharge at a low discharge voltage and sustain a long-distance discharge.
Abstract:
A display device uses electron accelerating layers in conjunction with electrodes at different voltages to emit electron beams with energy levels sufficient to excite a gas, which emits ultraviolet rays that in turn excite a light emitting layer to emit visible light. The use of electron accelerating layers makes it possible to excite the gas using a lower driving voltage and achieve improved luminous efficiency.
Abstract:
Provided is a flat lamp that includes: an upper substrate and a lower substrate arranged to face each other and separated by a predetermined distance, with at least one discharge cell formed between the upper and lower substrates; and at least one pair of a first electrode portion and a second electrode portion formed on at least one of the upper and lower substrates, wherein one pair corresponds to one discharge cell, and the first electrode portion is composed of an electrode and the second electrode portion is composed of a plurality of electrodes.
Abstract:
Provided is a flat panel having a photocatalytic layer. The flat panel may include a bottom substrate; a plurality of barrier ribs on the bottom substrate; a top substrate separated from the bottom substrate by the barrier ribs with a discharge space surrounded by the bottom substrate, the top substrate and the barrier ribs; a plurality of discharge electrodes formed on one side of the top substrate, one side of the bottom substrate, or one side of each of the top substrate and the bottom substrate; a photocatalytic layer which may be formed on at least one of the inner surfaces of the discharge space and generates electrons and holes in response to UV light generated during discharge; and a fluorescent layer which may be formed on the photocatalytic layer and generates visible light in response to the UV light generated during the discharge.
Abstract:
A plasma discharge switch and a current driving device including the switch. The plasma discharge switch, which switches a flow of electric current between a first electrode and a second electrode by generating and extinguishing a plasma discharge in a discharge cell, includes a discharge cell. A first electrode and a second electrode are disposed in each discharge cell to generate a plasma discharge in the discharge cell so that electric current may flow between the first and second electrodes during the plasma discharge.
Abstract:
A plasma display panel including a front substrate and a rear substrate separated by a predetermined distance, barrier ribs disposed between the front substrate and the rear substrate and partitioning a plurality of discharge spaces, a plurality of first sustain electrodes and second sustain electrodes disposed in parallel on an inner surface of the front substrate, and a plurality of first dielectric layers and second dielectric layers, covering the first sustain electrodes and the second sustain electrodes, respectively, parallel to the first and second sustain electrodes and separated from each other by predetermined narrow spaces and predetermined wide spaces.
Abstract:
A plasma display panel including a transparent front substrate, a rear substrate disposed parallel to the front substrate, a barrier wall disposed between the front substrate and the rear substrate and defining light-emitting cells, address electrodes on the rear substrate and covered by a first dielectric layer, sustain electrode pairs extending in a direction orthogonal to a direction in which the address electrodes extend and covered by a second dielectric layer, red, green and blue phosphor layers coated on sides of the barrier wall and a surface of the first dielectric layer, and red, green and blue phosphor films formed on the second dielectric layer at regions corresponding to regions where the red, green and blue phosphor layers are formed.
Abstract:
In a plasma display panel, unit discharge regions arranged in a matrix shape are defined on a surface of a first substrate facing a second substrate, transparent discharge sustain electrodes are formed to face each other on the surface of the substrate, in the unit discharge regions, and bus electrodes are coupled to transparent discharge sustain electrodes to surround the unit discharge regions. Accordingly, discharges may occur evenly in the discharge regions to increase an average luminance. Additionally, a positive column discharge is possible by securing a sufficient discharge distance.
Abstract:
Provided is a flat lamp. The flat lamp comprises a front substrate and a rear substrate spaced apart from each other, forming a discharge space therebetween. Also, the flat panel includes electrodes forming an electric field in the discharge space to cause a discharge. At least one of through hole for allowing visible light emitted from the discharge space to pass through are formed in at least one of the electrodes.
Abstract:
Provided is a plasma flat lamp. The provided lamp includes a discharge gas filled in a discharge area of a discharge container, at least two electrodes generating a gas discharge in the discharge area, a low work function material layer located in a discharge path between the electrodes and collided against gas ions that are generated by the gas discharge, and a fluorescent layer generating visible rays by ultraviolet rays that are generated by the gas discharge in the discharge container. The provided plasma flat lamp reduces a driving voltage due to the low work function material layer against which ions are collided, and increases luminescent efficiency by reducing the absorption of ultraviolet rays of the low work function material layer.