摘要:
A composite material exhibiting at least one of a negative effective permittivity and a negative effective permeability for incident radiation at an operating wavelength is described. The composite material comprises a dielectric layer generally parallel to a dielectric layer plane, and further comprises a first plurality of nanowire pairs disposed in the dielectric layer. Each of the first plurality of nanowire pairs comprises substantially parallel conductive nanowires of short length and separation relative to the operating wavelength. Each of the first plurality of nanowire pairs is substantially coplanar with a first plane substantially parallel to the dielectric layer plane.
摘要:
A technique for reducing speckle in a projected image includes forming an image using a plurality of laser light emitters. An input to the plurality of laser light emitters is non-mechanically perturbed to a degree sufficient to disrupt wavefront uniformity across the array of laser light emitters.
摘要:
Raman spectroscopy systems include an analyte, a radiation source configured to emit incident radiation having a wavelength, and a detector that is capable of detecting only radiation having wavelengths within a detectable range that includes at least one wavelength corresponding to hyper Raman scattered radiation scattered by the analyte. The wavelength of the incident radiation is outside the detectable range. In particular systems, all wavelengths of radiation that are scattered in the direction of the detector impinge on the detector. Raman spectroscopy methods include providing an analyte and irradiating the analyte with incident radiation having a wavelength, providing a detector capable of detecting only wavelengths of radiation within a detectable range that does not include the wavelength of the incident radiation, and detecting Raman scattered radiation scattered by the analyte. A continuous path free of radiation filters may be provided between the analyte and the detector.
摘要:
A composite material for providing at least one of a negative effective permeability and a negative effective permittivity for incident radiation of at least one wavelength is described. The composite material comprises a plurality of three-dimensional resonant cells disposed across a first substrate. Each three-dimensional resonant cell comprises a base substantially parallel to the substrate and at least three sidewalls upwardly extending therefrom. Each upwardly extending sidewall comprising a sidewall substrate having at least one conductor patterned thereon. Each upwardly extending sidewall is fabricated by forming the sidewall substrate as a substantially horizontal layer above the first substrate, lithographically patterning the sidewall substrate with the at least one conductor while horizontally disposed above the first substrate, and tilting up the sidewall substrate to the upwardly extending position.
摘要:
Raman systems include a radiation source, a radiation detector, and a Raman device or signal-enhancing structure. Raman devices include a tunable resonant cavity and a Raman signal-enhancing structure coupled to the cavity. The cavity includes a first reflective member, a second reflective member, and an electro-optic material disposed between the reflective members. The electro-optic material exhibits a refractive index that varies in response to an applied electrical field. Raman signal-enhancing structures include a substantially planar layer of Raman signal-enhancing material having a major surface, a support structure extending from the major surface, and a substantially planar member comprising a Raman signal-enhancing material disposed on an end of the support structure opposite the layer of Raman signal-enhancing material. The support structure separates at least a portion of the planar member from the layer of Raman signal-enhancing material by a selected distance of less than about fifty nanometers.
摘要:
An electromagnetic resonance device includes an input reflector, an output reflector, and a negative index material (NIM) disposed between the input reflector and the output reflector. The input reflector and output reflector are configured to be reflective to radiation having a wavelength of interest. The NIM is configured to have a negative refraction at the wavelength of interest. A first radiation is reflected by the input reflector toward the first surface of the NIM, passes through the NIM, and is focused on the output reflector as a second radiation. The second radiation is reflected by the output reflector toward the second surface of the NIM, passes through the NIM, and is focused on the input reflector as the first radiation. A gain medium may be included to amplify the first radiation and the second radiation to generate a laser radiation.
摘要:
A NERS-active structure includes a deformable, active nanoparticle support structure for supporting a first nanoparticle and a second nanoparticle that is disposed proximate the first nanoparticle. The nanoparticles each comprise a NERS-active material. The deformable, active nanoparticle support structure is configured to vary the distance between the first nanoparticle and the second nanoparticle while performing NERS. Various active nanoparticle support structures are disclosed. A NERS system includes such a NERS-active structure, a radiation source for generating radiation scatterable by an analyte located proximate the NERS-active structure, and a radiation detector for detecting Raman scattered radiation scattered by the analyte. A method for performing NERS includes providing such a NERS-active structure, providing an analyte at a location proximate the NERS-active structure, irradiating the NERS-active structure and the analyte with radiation, varying the distance between the nanoparticles, and detecting Raman scattered radiation scattered by the analyte.
摘要:
Structures for amplifying light include a resonant cavity in which an analyte may be positioned. The structures for amplifying light may be used to amplify the incident light employed in surface enhanced Raman spectroscopy (SERS). SERS systems employing the structures for amplifying light of the present invention and methods of performing SERS are also disclosed.
摘要:
A nano-colonnade structure-and methods of fabrication and interconnection thereof utilize a nanowire column grown nearly vertically from a (111) horizontal surface of a semiconductor layer to another horizontal surface of another layer to connect the layers. The nano-colonnade structure includes a first layer having the (111) horizontal surface; a second layer having the other horizontal surface; an insulator support between the first layer and the second layer that separates the first layer from the second layer. A portion of the second layer overhangs the insulator support, such that the horizontal surface of the overhanging portion is spaced from and faces the (111) horizontal surface of the first layer. The structure further includes a nanowire column extending nearly vertically from the (111) horizontal surface to the facing horizontal surface, such that the nanowire column connects the first layer to the second layer.
摘要:
A SERS-active structure is disclosed that includes a substrate and at least two nanowires disposed on the substrate. Each of the at least two nanowires has a first end and a second end, the first end being attached to the substrate and the second end having a SERS-active tip. A SERS system is also disclosed that includes a SERS-active structure. Also disclosed are methods for forming a SERS-active structure and methods for performing SERS with SERS-active structures.