Abstract:
A multi-string well has an electric submersible pump (ESP) that can be removed without killing the well. A slotted liner is sealingly secured externally to casing and internally to a guide string that remains in the wellbore when the ESP is removed. A ported sub is part of the guide string and a concentric screen that can have instruments that moves relatively to the guide string can selectively allow flow in an annulus between them and to the ported sub or that annulus between the guide and concentric strings can be blocked off by manipulation of the concentric string to close the ported sub. With the lower portion of the well now blocked off, the wellhead can be removed so that the ESP can come out with the production string. The device has particular application to steam assisted gravity drainage (SAGD) systems as well as other downhole applications.
Abstract:
A backoff sub includes a housing; and a backoff facilitator at least partially within the housing and capable of adding energy to a system within which the sub is disposable and method.
Abstract:
A pressure storage device includes a porous material; and a non-wetting fluid having a glass transition temperature above a normal exposure temperature for the device and method.
Abstract:
A fluid loss control system having a loss control valve and a plurality of zones including an isolation assembly disposed in a wellbore and a string having a stinger at a downhole most end thereof. The string is supportive of a moveable seal at a selected position uphole of the stinger, the position being calculated to cause engagement of the seal with the isolation assembly and to position the moveable seal to facilitate fluid-flow around the seal when the stinger is engaged with a seal bore of one of the plurality of zones. A method for controlling fluid loss including isolating a fluid column uphole of a pressure seal spaced from the lower completion, opening a fluid loss control valve, stabbing a stinger into a seal bore of the lower completion, and positioning the seal to facilitate fluid flow therearound.
Abstract:
An apparatus and methods are disclosed for using optical sensors to determine the position of a movable flow control element in a well control tool. A housing has a movable element disposed within such that the element movement controls the flow through the tool. An optical sensing system senses the movement of the element. Optical sensors are employed that use Bragg grating reflections, time domain reflectometry, and line scanning techniques to determine the element position. A surface or downhole processor is used to interpret the sensor signals.
Abstract:
Computer control and sensory information are combined with gas lift valve having a plurality of individual openings which are openable or closeable individually to provide varying flow rates of the lift gas. Each of the openings is controlled and is sensitive to downhole sensors.
Abstract:
Computer control and sensory information are combined with gas lift valve having a plurality of individual openings which are openable or closeable individually to provide varying flow rates of the lift gas. Each of the openings is controlled and is sensitive to downhole sensors.
Abstract:
A permanently installed, remotely monitored and controlled transient pressure test system is provided. This system utilizes shut-in/choke valves, pressure sensors and flow meters which are permanently associated with the completion string to perform transient pressure tests in single and multiple zone production and injection wells. The present invention permits full bore testing which thereby eliminates undesirable wellbore storage effects. The present invention further allows for pressure testing limited only to a selected zone (or zones) in a well without expensive well intervention and without halting production from, or injection into, other zones in the well. The permanently located pressure test system of this invention also allows for real-time, downhole nodal sensitivity and control. This pressure test system may be permanently deployed either in production wells or injection wells.
Abstract:
The method includes running a liner, production packer and polished bore receptacle (PBR) into a well on the production tubing string, cementing the liner in place by pumping cement through the production tubing string, setting the packer, and optionally thereafter releasing an upper portion of the tubing string from a PBR. A seal assembly isolates the PBR bore from cement exposure during liner cementation. Annular pressure produces a reverse fluid surge and circulating flow to prevent PBR seal area contamination when the tubing string is lifted away from the PBR. A connecting assembly 12 is suspended from a production tubing string 11 to position a liner 17 in a wellbore. The connecting assembly transmits rotational and longitudinal forces from the production tubing string to properly position and cement the liner in the wellbore. The connecting assembly includes a device 20 to limit torque forces on the tubing string, and a longitudinal slip mechanism 28 permits limited longitudinal movement between the connecting assembly and tubing string. A packer 15 is set to seal between the production tubing string 11 and the well casing. An extended length of tubing 11a extends below the packer to provide a continuous tubing/liner-casing overlap area for cementation.