Abstract:
The present invention relates to an optical network element (30, 34) comprising a wavelength selective switch, WSS, (432, 136) with one or more input ports, a working output port (38) and a separate protecting output port (40), the WSS (432) being configurable to a working configuration, in which one or more channels are routed from said one or more input ports to the working output port (38), and being configurable to a protecting configuration, in which said one or more channels or a subset thereof are routed from said one or more input ports to the protecting output port (40), or with a working input port (42) and a protecting input port (44) and with one or more output ports, the WSS (136) being configurable to a working configuration, in which one or more channels are routed from the working input (42) port to the one or more output ports, and being configurable to a protecting configuration, in which one or more channels are routed from the protecting input port (44) to the one or more output ports, a computer readable medium including program code defining configuration information, a control unit configured to control the WSS (432, 136) to adopt the working configuration or the protecting configuration based on the predefined configuration information.
Abstract:
An optical network has an optical line termination coupled to a backbone network, in particular to an optical long haul network and a local exchange coupled to an optical access network. The local exchange provides an optical connection between an optical network unit of a tree topology and the optical line termination, which is part of a ring topology. There is also described a method for processing data in such an optical network.
Abstract:
It is provided an apparatus, comprising a box configured to conduct an optical fiber from an exterior to an interior of the box; at least one of a mounting means adapted to mount a connecting means to which the optical fiber may be connected and a guiding means adapted to guide the optical fiber, wherein the at least one of the mounting means and the guiding means is arranged in the interior of the box; a detecting means arranged in the interior of the box adapted to detect a first signal from the interior of the box, wherein the first signal is at least one of a light and a smoke; wherein the interior of the box is substantially shielded from a second signal from an exterior of the box, and the detecting means is suitable to detect the second signal in a same manner as the first signal.
Abstract:
A method and a device for data processing in an optical communication network are provided, wherein in an energy saving mode of a polarization multiplexing system data signals are transmitted or received via one polarization plane; and wherein components of the transmitter or receiver of the other polarization plane are at least partially operated in a reduced power mode. Furthermore, a communication system is suggested comprising said device.
Abstract:
A method and a device is provided driving an optical laser diode (710, 711) during operation in an optical communication network, by determining a laser transfer function (741, 742) during operation of the laser diode (710, 711) and providing a control signal (750, 749) for driving the laser diode (710, 711) according to the laser transfer function (741, 742). Further, a method for driving a first and a second optical laser diode during operation in an optical communication network is provided. Furthermore, an optical amplifier and a communication system is suggested.
Abstract:
Component signal values are derived from component signals and fed to at least one fixed equalizer which generates equalizer output signals. The signals are fed to phase error detectors generating phase error signals. The phase error signals are combined with further phase error signals derived by further error detectors receiving signal values from further equalizers and/or the component signal values directly from sample units.
Abstract:
A method and device is provided for reducing optical transmission impairments, particularly nonlinear effects, of at least one link Said method comprising the following steps: extracting a phase information (Δθ) from an optical signal (120) received via that at least one link, determining a nonlinear coefficient (γ), associated with the at least one link, based on the phase information (Δθ), applying a control mechanism (202) using the nonlinear coefficient (γ). Furthermore, a communication system is suggested comprising said device.
Abstract:
A method and a device for conveying optical data are provided, wherein an optical network unit conveys data to a terminal via dual sideband modulation, wherein the terminal processes only the upper or only the lower sideband received from the optical network unit, and wherein several dual sideband modulated signals from several optical network units partially overlap when being received at the terminal. Furthermore, a communication system is suggested comprising at least one such device.
Abstract:
An optical network is suggested, comprising a first set of optical fibers, a multimode multiplexer, a multimode amplifier, a multimode demultiplexer, and a second set of optical fibers, wherein the first set of optical fibers is connected via the multimode multiplexer to the multimode amplifier and wherein the multimode amplifier is connected via the multimode demultiplexer to the second set of optical fibers. Accordingly, an optical network element is provided.
Abstract:
A method and a device for data processing in an optical communication network are provided, wherein in an energy saving mode of a polarization multiplexing system data signals are transmitted or received via one polarization plane; and wherein components of the transmitter or receiver of the other polarization plane are at least partially operated in a reduced power mode. Furthermore, a communication system is suggested comprising said device.