Abstract:
Systems, methods, apparatuses, and computer readable media are disclosed for improving, in some examples, backhaul of sensor and other data to a real time location system (RTLS) network. In the context of a method for communication by a tag, the method includes receiving, at the tag, sensor data from at least one sensor, generating, using a processor of the tag, a tag blink data packet, the tag blink data packet including a tag identifier and at least a portion of the received sensor data, and transmitting the tag blink data packet.
Abstract:
Provided herein are systems, methods and computer readable media for monitoring the health and fitness of an individual. An example method comprises correlating a tag and a sensor to the individual, receiving tag derived data indicative of a location for the individual, and receiving sensor derived data indicative of at least one of a health, a fitness, an operation level, or a performance level for the individual. The method further comprises associating the sensor-derived data with the location for the individual based on the location of the sensor.
Abstract:
An XML system is configured to encode RFID devices embedded in media, based upon an extensible markup language (XML) input data stream. The computer system further includes an XML processor configured to receive and process a format template, associate the XML data contained in the XML input data stream and the format template, a formatting engine configured to format the associated XML data according to a format governed by the format template, and/or generate encoding information for an RFID device.
Abstract:
Provided herein are devices, systems, methods and various means, including those related to translating command and other types of computer instructions being transmitted to a destination processor from a language that is non-native to the destination processor to a language that is native to the destination processor. Some embodiments discussed herein can include a processing filter that is configured to identify whether incoming instructions are formatted in a translatable non-native language of the destination processor and, if so, process the non-native commands into native commands. The processed, native commands can then be relayed to the destination processor by some embodiments discussed herein. The processing filter can be implemented in a manner that is portable and independent of any specific framework and/or programming language. For example, the processing functionality (including the identification and translation features discussed herein) can be implemented in the same device as the destination processor and/or at a system remote from the destination device (e.g., at a remote host system).
Abstract:
A RFID tag or label comprises a RFID tag module (comprising an electronic identification circuit and a coupling means) and an antenna structure coupled to the coupling means. The RFID tag module is separate from, separable or arranged to be severable from, the antenna structure. The tag module can be placed in or on an object and the antenna structure in or on packaging material for use with the object. A patch antenna type RFID tag antenna structure has a ground plane spaced from the patch antenna so as to increase the range of the tag. The ground plane is not substantially larger than, and electrically insulated from, the patch antenna. The ground plane is flexible, so the RFID tag structure can be worn by a human, and can be incorporated into a piece of clothing. A RFID antenna structure for use with a tag reader is made flat and robust so that it can be mounted on the ground to be walked upon or driven over. A bi-directional YAGI type RFID tag antenna structure has director elements on two opposite sides so that the YAGI antenna radiates in two opposite directions. An object includes a gain increasing metallic structure for increasing the gain of a RFID tag when placed near the object so as to form a RFID tag antenna structure.
Abstract:
Provided herein are devices, systems, methods and various means, including those related to translating command and other types of computer instructions being transmitted to a destination processor from a language that is non-native to the destination processor to a language that is native to the destination processor. Some embodiments discussed herein can include a processing filter that is configured to identify whether incoming instructions are formatted in a translatable non-native language of the destination processor and, if so, process the non-native commands into native commands. The processed, native commands can then be relayed to the destination processor by some embodiments discussed herein. The processing filter can be implemented in a manner that is portable and independent of any specific framework and/or programming language. For example, the processing functionality (including the identification and translation features discussed herein) can be implemented in the same device as the destination processor and/or at a system remote from the destination device (e.g., at a remote host system).
Abstract:
Aspects of the disclosure provide systems, methods, and apparatuses for leveraging near field communications (NFC) in conjunction with printer devices. Examples of the disclosure provide for novel methods of interfacing with printers configured to use near field communications using NFC enabled readers and output media. Examples include using a smart phone to access data stored on an NFC tag associated with the printer. The data provided by the NFC tag may include printer status information, printer configuration information, network information, or other data relating to operation and maintenance of the printer. The printer may also encode the NFC tag dynamically, including encoding data to NFC tags included on print media. The printer may encode an NFC tag associated with media with a variety of information in support of various use cases.
Abstract:
The present invention provides a cleaning assembly for use in a media processing device. In various embodiments, the cleaning assembly includes a first roller that at least partially engages a second roller, and a transport path that passes between the first roller and the second roller. There may also be a third collection roller that at least partially engages the second roller. The third collection roller may also engage a drive assembly that may be used to drive a media substrate along the transport path. In one embodiment, the second roller defines a surface adherence that is greater than a surface adherence of the first roller and the third collection roller defines a surface adherence that is greater than the surface adherence of the second roller and the drive assembly. As a result, the present invention provides a cleaning assembly capable of cleaning the drive assembly and opposed surfaces of a media substrate in a single pass.
Abstract:
An XML processing system for use in a barcode printer apparatus includes a computer system operatively coupled to the barcode printer apparatus. The computer system further includes an XML processor configured to receive, parse, and process an XML input data stream and obtain schema identified in the XML data stream from a schema repository. The XML processor validates the XML data stream based upon the schema obtained. Also included is an XSLT processor configured to obtain a stylesheet identified in the XML data stream from a stylesheet repository. The XSLT processor transforms data in the XML input data stream into transformed XML data based upon the stylesheet obtained. Also, an XSLFO processor formats the transformed XML data into formatted XML data based upon XSLFO instructions contained in the stylesheet. A barcode rendering subsystem then receives the formatted XML data and generates a bit map representative of the bar code label.
Abstract:
The present invention is a laminate media, in the form of a continuous strip of carrier-less, pre-cut plastic patch protections, connected by perforations. The invention further describes both a method for separating the patches from each other by stressing the perforated patch area without stopping the driving process and a cassette within which the separation process occurs.