Adaptive antenna tuning system
    51.
    发明授权

    公开(公告)号:US11569858B2

    公开(公告)日:2023-01-31

    申请号:US16898069

    申请日:2020-06-10

    Applicant: Apple Inc.

    Abstract: A radio frequency device has a multifunctional tuner that stores measurements of reflection coefficient parameter in a register. The radio frequency device also has a transceiver that has a transmitter. The transceiver may detect a transmitter signal from the transmitter to an antenna in an initial tuning state and then determine whether the transmitter signal is stable. In response to the transmitter signal being stable, the transceiver may measuring the reflection coefficient parameters at the multifunctional tuner. Furthermore, the radio frequency device has a baseband controller that has a memory to store instructions and a processor to execute the instructions. The instructions cause the processor to determine an antenna impedance based on the reflection coefficient parameters, and in response to determining that the antenna impedance is greater than or less than a threshold antenna impedance, iteratively tune the antenna using the multifunctional tuner.

    Electronic Device With Millimeter Wave Antenna Arrays

    公开(公告)号:US20190173160A1

    公开(公告)日:2019-06-06

    申请号:US16272932

    申请日:2019-02-11

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas. The antennas may include millimeter wave antenna arrays formed from arrays of patch antennas, dipole antennas or other millimeter wave antennas on millimeter wave antenna array substrates. Circuitry such as upconverter and downconverter circuitry may be mounted on the substrates. The upconverter and downconverter may be coupled to wireless communications circuitry such as a baseband processor circuit using an intermediate frequency signal path. The electronic device may have opposing front and rear faces. A display may cover the front face. A rear housing wall may cover the rear face. A metal midplate may be interposed between the display and rear housing wall. Millimeter wave antenna arrays may transmit and receive antenna signals through the rear housing wall.

    Electronic Device Antennas Having Multiple Operating Modes

    公开(公告)号:US20190081615A1

    公开(公告)日:2019-03-14

    申请号:US15700580

    申请日:2017-09-11

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided with wireless circuitry and control circuitry. The wireless circuitry may include an antenna with an inverted-F antenna resonating element formed from portions of a peripheral conductive electronic device housing structure and may have an antenna ground that is separated from the antenna resonating element by a gap. The antenna may include a first adjustable component coupled between the antenna resonating element arm and the antenna ground on a first side of the antenna feed and a second adjustable component coupled between the antenna resonating element arm and the antenna ground on a second side of the antenna feed. Control circuitry in the electronic device may adjust the first and second adjustable components between a first tuning mode, a second tuning mode, and a third tuning mode.

    Antenna tuning components in patterned conductive layers

    公开(公告)号:US10200105B2

    公开(公告)日:2019-02-05

    申请号:US15638060

    申请日:2017-06-29

    Applicant: Apple Inc.

    Abstract: An electronic device may include a peripheral conductive housing wall. The housing wall may be patterned to form first and second continuous regions defining opposing edges of a patterned region. The patterned region may include slots that divide the wall into conductive structures between the first and second continuous regions. A tuning element for an antenna in the device may be formed from the conductive structures and the slots in the patterned region. The slots and the conductive structures in the patterned region may be configured to mitigate any excessive capacitances between the first and second continuous regions in one or more desired frequency bands to optimize antenna efficiency. The slots may be narrow enough so as to be invisible to the un-aided human eye. This may configure the first and second continuous regions to appear to a user as a single continuous piece of conductor.

    Electronic Device Having Antenna Tuning Circuits With Shared Control Interface Circuitry

    公开(公告)号:US20190027809A1

    公开(公告)日:2019-01-24

    申请号:US15655251

    申请日:2017-07-20

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided with wireless circuitry that includes one or more antennas and a transceiver. An integrated circuit may be coupled between the transceiver and the antenna and may include multiple tunable components such that tune the response of the antenna. The control signals may be generated by a tuning controller external to the integrated circuit. Shared control interface circuitry may be formed on the integrated circuit for interfacing between the tuning controller and each of the tunable components on the integrated circuit. The control interface circuitry may include a conductive path and decoupling circuitry that routes the control signals to corresponding control inputs on each of the tunable components. Sharing the control interface circuitry between each tunable component on the integrated circuit may minimize the space required on the integrated circuit for controlling the response of the antenna.

    Electronic device having antenna tuning integrated circuits with sensors

    公开(公告)号:US09960801B2

    公开(公告)日:2018-05-01

    申请号:US15636498

    申请日:2017-06-28

    Applicant: Apple Inc.

    CPC classification number: H04B1/40 H01Q3/26 H01Q9/0442 H04B1/0458 H04B1/18

    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas. An antenna may have an antenna feed that is coupled to a radio-frequency transceiver with a transmission line. An impedance matching circuit may be coupled to the antenna feed to match the impedance of the transmission line and the antenna. The impedance matching circuit and tunable circuitry in the antenna may be formed using integrated circuits. Each integrated circuit may include switching circuitry that is used in switching components such as inductors and capacitors into use. Sensors such as temperature sensors, current and voltage sensors, power sensors, and impedance sensors may be integrated into the integrated circuits. Each integrated circuit may store settings for the switching circuitry and may include communications and control circuitry for communicating with external circuits and processing sensor data.

Patent Agency Ranking