Abstract:
An electronic device may be provided with a display having a backlight with light sources of different colors. The electronic device may include a color ambient light sensor that measures the color of ambient light and control circuitry that adjusts the color of light emitted from the backlight based on the color of ambient light. The light sources may include at least first and second light-emitting diodes that emit light having different color temperatures. The control circuitry may adjust the intensity of light emitted from the first light-emitting diode relative to the intensity of light emitted from the second light-emitting diode to produce a backlight color that more closely matches the color of ambient light. The first and second light-emitting diodes may include an ultraviolet light-emitting diode die and a blue light-emitting diode die that are mounted in a common semiconductor package.
Abstract:
An electronic device may be provided with a display. A content generator may generate frames of image data to be displayed on the display. The display may have an array of pixels that emit light to display images. The pixels may contain light-emitting devices such as organic light-emitting diodes, quantum dot light-emitting diodes, and light-emitting diodes formed from discrete semiconductor dies. As a result of aging, the light producing capabilities of the light-emitting devices may degrade over time. The electronic device may have a temperature sensor that gathers temperature measurements. A pixel luminance degradation compensator may apply compensation factors to uncorrected pixel luminance values associated with the frames of image data to produce corresponding corrected pixel luminance values for the display. The compensation factors may be based on aging history information such as pixel luminance history and temperature measurements.
Abstract:
An electronic device may be provided having an organic light-emitting diode display and control circuitry for operating the display. The display may include one or more display layers interposed between the control circuitry and a display layer having thin-film transistors. The electronic device may include a coupling structure interposed between the layer of thin-film transistors and the control circuitry that electrically couples the layer of thin-film transistors to the control circuitry. The coupling structure may include a dielectric member having a conductive via, a flexible printed circuit having a bent portion, or a conductive via formed in an encapsulation layer of the display. The display may include a layer of opaque masking material. The layer of opaque masking material may be formed on an encapsulation layer, an organic emissive layer, a thin-film transistor layer, or a glass layer of the organic light-emitting diode display.
Abstract:
A display may have a first stage such as a color liquid crystal display stage and a second stage such as a monochromatic liquid crystal display stage that are coupled in tandem so that light from a backlight passes through both stages. The dynamic range of the display may be enhanced by using the second stage to perform local dimming operations. The pixel pitch of the second stage may be greater than the pixel pitch of the first stage to ease alignment tolerances and reduce image processing complexity. The color stage and monochromatic stages may share a polarizer. A color filter in the color stage may have an array of red, green, and blue elements or an array of white, red, green, and blue elements. The color stage may be a fringe field display and the monochrome stage may be an in-plane switching display or a twisted nematic stage.
Abstract:
An electronic device may include a display having an array of display pixels and having display control circuitry that controls the operation of the display. The display control circuitry may operate the display in different modes. In a paper mode, display control circuitry may use stored spectral reflectance data to adjust display colors such that the colors appear as they would on a printed sheet of paper. In a low light mode when the ambient light level is below a threshold, the light emitted from the display may be adjusted to mimic the appearance of an incandescent light source. In a bright light mode when the ambient light level exceeds a threshold, the light emitted from the display may be adjusted to maximize readability in bright light. The target white point of the display may be adjusted based on which mode the display is operating in.
Abstract:
An electronic device may be provided having an organic light-emitting diode display and control circuitry for operating the display. The display may include one or more display layers interposed between the control circuitry and a display layer having thin-film transistors. The electronic device may include a coupling structure interposed between the layer of thin-film transistors and the control circuitry that electrically couples the layer of thin-film transistors to the control circuitry. The coupling structure may include a dielectric member having a conductive via, a flexible printed circuit having a bent portion, or a conductive via formed in an encapsulation layer of the display. The display may include a layer of opaque masking material. The layer of opaque masking material may be formed on an encapsulation layer, an organic emissive layer, a thin-film transistor layer, or a glass layer of the organic light-emitting diode display.
Abstract:
A polarizer includes a polarizer component having a top surface and an opposite bottom surface. The bottom surface is configured to couple to a color filter layer for a liquid crystal display. The polarizer also includes a transparent conducting layer disposed over the top surface. The transparent conducting layer being configured to electrically shield the LCD from a touch panel. The polarizer further includes a coating layer disposed over the transparent conducting layer.
Abstract:
An electronic device may be provided with a display mounted in a housing. The display may include a liquid crystal display module and a reflective polarizer having an in-plane optical axis. The display may also include a backlight unit that includes a light source, a light guide element, and a reflector film coupled to a backside of the light guide element. The display may also include a light retardation layer such as a quarter wave film. The quarter wave film may be arranged between the reflective polarizer and the reflector film of the backlight unit. During operation of the display, partially polarized light that is output from a front side of the light guide element may have a first component parallel to the in-plane optical axis and a second component perpendicular to the in-plane optical axis of the reflective polarizer. The second component may be reflected from the reflective polarizer.
Abstract:
An electronic device may be provided with a display cover layer mounted to the device using an adhesive bond with a display. The display may be a flexible display. The flexible display may include Organic Light Emitting Diode display technology. The display may be mounted to a rigid support structure. The rigid support structure may be mounted to a device housing member. Mounting the display cover layer to the display may eliminate the need to mount the display cover layer to the device housing and may allow active display pixels to be visible under the display cover layer closer to the device housing than in conventional devices. Providing the electronic device with active display pixels closer to the device housing may reduce the need for an inactive border around the display and may improve the aesthetic appeal of the electronic device.
Abstract:
A display has an array of display pixels formed from display layers such as one or more polarizer layers, a substrate on which an array of display pixel elements such as color filter elements and downconverter elements are formed, a liquid crystal layer, and a thin-film transistor layer that includes display pixel electrodes and display pixel thin-film transistors for driving control signals onto the display pixel electrodes to modulate light passing through the display pixels. A light source such as one or more laser diodes or light-emitting diodes may be used to generate light for the display. The light may be launched into the edge of a polymer layer or other light guide plate structure. A light guide plate ma include phase-matched structures such as holographically recorded gratings or photonic lattices that direct the light upwards through the array of display pixels.