Abstract:
An auto-detection scheme may be applied to a physical layer (PHY) preamble of a communications packet, such as an 802.11 packet, to identify which generation of a communication standard was used to generate the packet. A packet of a wireless transmission may be received by a wireless device. The packet may include a PHY preamble, including a first field, such as a legacy long training field (L-LTF), and a second, subsequent field, such as a non-legacy Signal field. The wireless device may determine that the first field is encoded using a Fast-Fourier Transform (FFT) of a first size, and that the second field is encoded using a FFT of a second, different size. This determining may identify a generation of the communication standard used to generate the packet. In response to the determining, the wireless device may decode the packet according to the identified generation of the communication standard.
Abstract:
Wireless communication devices (UEs) may include multiple receive (RX) chains and associated antennas, and at least one transmit (TX) chain co-located with one of the RX chains. The UE may track instant fading of the antenna gain(s) during reception of packets from an associated access point (AP) device to which the UE intends to transmit packets. The UE may also track long term antenna gain(s), using any packets received at the multiple RX chains within the UE. At a switching occasion, a decision is made by the UE whether to switch antennas. If the instant fading detection is based on packets received no later than a specified time period prior to the switching occasion, then the UE may make the switching decision based on the results of the instant fading tracking. Otherwise, the UE may make the switching decision based on the results of the long term antenna gain tracking.
Abstract:
Some embodiments relate to a waveform design for time-of-flight estimation in a wireless communication system. The waveform may include a number N of signal tones, wherein the number N of signal tones is greater than a number M of signal tones that the receiving wireless device is configured to decode. Upon receipt of the waveform, the receiving wireless device may store a timestamp which indicates a time of receipt of the waveform. The receiving wireless device may decode M of the N signal tones. For example, the receiving wireless device may decode the middle M signal tones of the N signal tones. One or more of the transmitting or receiving wireless devices may then estimate a distance between them based at least in part on the timestamp.
Abstract:
An auto-detection scheme may be applied to a physical layer (PHY) preamble of a communications packet, such as an 802.11 packet, to identify which generation of a communication standard was used to generate the packet. A packet of a wireless transmission may be received by a wireless device. The packet may include a PHY preamble, including a first field, such as a legacy long training field (L-LTF), and a second, subsequent field, such as a non-legacy Signal field. The wireless device may determine that the first field is encoded using a Fast-Fourier Transform (FFT) of a first size, and that the second field is encoded using a FFT of a second, different size. This determining may identify a generation of the communication standard used to generate the packet. In response to the determining, the wireless device may decode the packet according to the identified generation of the communication standard.
Abstract:
A device and method generates a hopping scheme for mobile stations of a wireless network. The method includes receiving a number of channels N of the wireless network. The method includes generating a shuffling matrix as a function of the number of channels N, each row of the shuffling matrix being indicative of a respective one of the mobile stations, each column of the shuffling matrix being indicative of a respective broadcast time of a discovery signal in a hopping scheme. The method includes generating the hopping scheme for the mobile stations in the channels as a function of the shuffling matrix. The hopping scheme maximizes an interval between two consecutive broadcast times that any two of the mobile stations are assigned to transmit discovery signals on adjacent channels.
Abstract:
Wireless communication devices (UEs) may include multiple receive (RX) chains and associated antennas, and at least one transmit (TX) chain co-located with one of the RX chains. The UE may track instant fading of the antenna gain(s) during reception of packets from an associated access point (AP) device to which the UE intends to transmit packets. The UE may also track long term antenna gain(s), using any packets received at the multiple RX chains within the UE. At a switching occasion, a decision is made by the UE whether to switch antennas. If the instant fading detection is based on packets received no later than a specified time period prior to the switching occasion, then the UE may make the switching decision based on the results of the instant fading tracking. Otherwise, the UE may make the switching decision based on the results of the long term antenna gain tracking.
Abstract:
A mobile wireless device adapts receive diversity during discontinuous reception based on downlink signal quality, page indicators and page messages. When the downlink signal quality exceeds a pre-determined threshold, the mobile wireless device decodes a page indicator channel through an initial antenna, and otherwise, decodes a paging channel through the initial antenna without decoding the page indicator channel. The mobile wireless device switches to decoding the paging channel through an alternate antenna when a page indicator decodes as an erasure. When a paging message received through a single antenna decodes with an incorrect error checking code, the mobile wireless devices enables receive diversity through multiple antennas for subsequent decoding. The mobile wireless device switches between single antenna reception and multiple antenna reception based on tracking multiple consecutive error checking code failures and successes.
Abstract:
In some embodiments, a user equipment device (UE) implements a method for discovering the presence of neighboring UEs using an on-demand discovery signal transmission technique. This discovery process may be performed to enable the UEs to perform peer-to-peer communications with each other, wherein peer-to-peer communications is defined as direct communication between the UEs without involving a base station. The UE may be configured to transmit a discovery request signal when it has moved greater than a threshold amount since transmission of a prior discovery request signal. The discovery request signal causes one or more neighboring UEs to each transmit a discovery signal in response, and also causes the UE which generated the discovery request signal to transmit its own discovery signal. The received discovery signal from each of the neighboring UEs is useable to discover, or detect the presence of, these neighboring UEs.
Abstract:
Electronic devices may be provided that contain wireless communication circuitry. The wireless communication circuitry may include radio-frequency transceiver circuitry coupled to antennas by switching circuitry. Multiple radio access technologies may be supported. A device may include first and second antennas. Control circuitry can configure the transceiver circuitry and switching circuitry to support operation of the device in active and idle modes for each radio access technology. In some configurations, both antennas may be used to support operations associated with one of the radio access technologies. In other configurations, the first antenna may be used to support operations with a first of the radio access technologies while the second antenna is used to support operations with a second of the radio access technologies.
Abstract:
A device and method generates a hopping scheme for mobile stations of a wireless network. The method includes receiving a number of channels N of the wireless network. The method includes generating a shuffling matrix as a function of the number of channels N, each row of the shuffling matrix being indicative of a respective one of the mobile stations, each column of the shuffling matrix being indicative of a respective broadcast time of a discovery signal in a hopping scheme. The method includes generating the hopping scheme for the mobile stations in the channels as a function of the shuffling matrix. The hopping scheme maximizes an interval between two consecutive broadcast times that any two of the mobile stations are assigned to transmit discovery signals on adjacent channels.