Abstract:
Aspects of the subject disclosure may include, for example, a system having a plurality of transmitters for launching, according to a signal, instances of first electromagnetic waves having different phases to induce propagation of a second electromagnetic wave at an interface of a transmission medium, the second electromagnetic wave having a non-fundamental wave mode and a non-optical operating frequency, wherein the plurality of transmitters has a corresponding plurality of antennas. A reflective plate is spaced a distance behind the plurality of antennas relative to a direction of the propagation of the second electromagnetic wave. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a transmission device that includes at least one transceiver configured to modulate data to generate a plurality of first electromagnetic waves in accordance with channel control parameters. A plurality of couplers are configured to couple at least a portion of the plurality of first electromagnetic waves to a transmission medium, wherein the plurality of couplers generate a plurality of second electromagnetic waves that propagate along the outer surface of the transmission medium. A training controller is configured to generate the channel control parameters based on channel state information received from at least one remote transmission device. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, identifying a device coupled to a transmission medium that obstructs a propagation of guided electromagnetic waves propagating on an outer surface of the transmission medium when the device is subjected to a liquid, and applying a material to a portion of the device to mitigate the obstruction. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a system for modulating a first electrical signal to generate first modulated electromagnetic waves, and transmitting the first modulated electromagnetic waves on a waveguide located in proximity to a transmission medium. In one embodiment, the first electromagnetic waves can induce second electromagnetic waves that propagate on an outer surface of the transmission medium. The second electromagnetic waves can have a first spectral range that is divided into, contains or otherwise includes a first control channel and a first plurality of bands. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a system for modulating a first electrical signal to generate first modulated electromagnetic waves, and transmitting the first modulated electromagnetic waves on a waveguide located in proximity to a transmission medium. In one embodiment, the first electromagnetic waves can induce second electromagnetic waves that propagate on an outer surface of the transmission medium. The second electromagnetic waves can have a first spectral range that is divided into, contains or otherwise includes a first control channel and a first plurality of bands. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a transmission device that includes at least one transceiver configured to modulate data to generate a plurality of first electromagnetic waves. A plurality of couplers are configured to couple at least a portion of the plurality of first electromagnetic waves to a transmission medium, wherein the plurality of couplers generate a plurality of mode division multiplexed second electromagnetic waves that propagate along the outer surface of the transmission medium. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, receiving a plurality of communication signals, and generating, according to the plurality of communication signals, signals that induce a plurality of electromagnetic waves bound at least in part to a dielectric material. Each electromagnetic wave of the plurality of electromagnetic waves conveys at least one communication signal of the plurality of communication signals, and the plurality of electromagnetic waves has a multiplexing configuration that reduces an interference between the plurality of electromagnetic waves. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, receiving a plurality of communication signals, and generating, according to the plurality of communication signals, a plurality of electromagnetic waves bound at least in part to a dielectric layer environmentally formed on a conductor. The plurality of electromagnetic waves propagates along the dielectric layer of the conductor without an electrical return path, where each electromagnetic wave of the plurality of electromagnetic waves includes a different portions of the plurality of communication signals, and where the plurality of electromagnetic waves utilizes a signal multiplexing configuration that at least reduces an interference between the plurality of electromagnetic waves. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, a generator that facilitates generation of an electromagnetic wave, a core, and a waveguide that facilitates guiding the electromagnetic wave towards the core to induce a second electromagnetic wave that propagates along the core. The core and/or the waveguide can be configured to reduce radiation loss of the second electromagnetic wave, propagation loss of the second electromagnetic wave, or a combination thereof. Other embodiments are disclosed.
Abstract:
A quasi-optical coupling system launches and extracts surface wave communication transmissions from a wire. At millimeter-wave frequencies, where the wavelength is small compared to the macroscopic size of the equipment, the millimeter-wave transmissions can be transported from one place to another and diverted via lenses and reflectors, much like visible light. Transmitters and receivers can be positioned near telephone and power lines and reflectors placed on or near the cables can reflect transmissions onto or off of the cables. The lenses on the transmitters are focused, and the reflectors positioned such that the reflected transmissions are guided waves on the surface of the cables. The reflectors can be polarization sensitive, where one or more of a set of guided wave modes can be reflected off the wire based on the polarization of the guided wave modes and polarization and orientation of the reflector.