Method and system for computational modeling of the aorta and heart
    52.
    发明授权
    Method and system for computational modeling of the aorta and heart 有权
    主动脉和心脏的计算建模方法和系统

    公开(公告)号:US08224640B2

    公开(公告)日:2012-07-17

    申请号:US12825905

    申请日:2010-06-29

    摘要: A method and system for generating a patient specific anatomical heart model is disclosed. A sequence of volumetric image data, such as computed tomography (CT), echocardiography, or magnetic resonance (MR) image data of a patient's cardiac region is received. A multi-component patient specific 4D geometric model of the heart and aorta estimated from the sequence of volumetric cardiac imaging data. A patient specific 4D computational model based on one or more of personalized geometry, material properties, fluid boundary conditions, and flow velocity measurements in the 4D geometric model is generated. Patient specific material properties of the aortic wall are estimated using the 4D geometrical model and the 4D computational model. Fluid Structure Interaction (FSI) simulations are performed using the 4D computational model and estimated material properties of the aortic wall, and patient specific clinical parameters are extracted based on the FSI simulations. Disease progression modeling and risk stratification are performed based on the patient specific clinical parameters.

    摘要翻译: 公开了一种用于产生患者特异性解剖心脏模型的方法和系统。 接收患者心脏区域的体积图像数据的序列,例如计算机断层摄影(CT),超声心动图或磁共振(MR)图像数据。 根据体积心脏成像数据序列估计的心脏和主动脉的多组分患者特定4D几何模型。 产生了基于4D几何模型中的个性化几何,材料特性,流体边界条件和流速测量中的一个或多个的患者特定4D计算模型。 使用4D几何模型和4D计算模型估计主动脉壁的患者特异性材料性质。 使用4D计算模型和主动脉壁的估计材料特性进行流体结构相互作用(FSI)模拟,并且基于FSI模拟提取患者特异性临床参数。 疾病进展模型和风险分层是根据患者的具体临床参数进行的。

    Method and System for Generating a Personalized Anatomical Heart Model
    59.
    发明申请
    Method and System for Generating a Personalized Anatomical Heart Model 有权
    生成个性化解剖心脏模型的方法和系统

    公开(公告)号:US20100070249A1

    公开(公告)日:2010-03-18

    申请号:US12562454

    申请日:2009-09-18

    IPC分类号: G06G7/60 G06F7/60 G06F17/10

    摘要: A method and system for generating a patient specific anatomical heart model is disclosed. Volumetric image data, such as computed tomography (CT) or echocardiography image data, of a patient's cardiac region is received. Individual models for multiple heart components, such as the left ventricle (LV) endocardium, LV epicardium, right ventricle (RV), left atrium (LA), right atrium (RA), mitral valve, aortic valve, aorta, and pulmonary trunk, are estimated in said volumetric cardiac image data. A patient specific anatomical heart model is generated by integrating the individual models for each of the heart components.

    摘要翻译: 公开了一种用于产生患者特异性解剖心脏模型的方法和系统。 接收患者心脏区域的体积图像数据,例如计算机断层扫描(CT)或超声心动图像数据。 用于多个心脏组件的单独模型,例如左心室(LV)心内膜,LV心外膜,右心室(RV),左心房(LA),右心房(RA),二尖瓣,主动脉瓣,主动脉和肺动脉干, 在所述体积心脏图像数据中估计。 患者特异性解剖心脏模型是通过对每个心脏部件的各个模型进行整合来产生的。

    System and method for learning relative distance in a shape space using image based features
    60.
    发明授权
    System and method for learning relative distance in a shape space using image based features 有权
    使用基于图像的特征来学习形状空间中的相对距离的系统和方法

    公开(公告)号:US07603000B2

    公开(公告)日:2009-10-13

    申请号:US11464851

    申请日:2006-08-16

    IPC分类号: G06K9/60

    摘要: A system and method for identifying a shape of an anatomical structure in an input image is disclosed. An input image is received and warped using a set of warping templates resulting in a set of warped images. An integral image is calculated for each warped image. Selected features are extracted based on the integral image. A boosted feature score is calculated for the combined selected features for each warped image. The warped images are ranked based on the boosted feature scores. A predetermined number of warped images are selected that have the largest feature scores. Each selected warped image is associated with its corresponding warping template. The corresponding warping templates are associated with stored shape models. The shape of the input image is identified based on the weighted average of the shapes models.

    摘要翻译: 公开了一种用于识别输入图像中的解剖结构的形状的系统和方法。 使用一组翘曲模板接收和扭曲输入图像,产生一组翘曲图像。 为每个弯曲图像计算整体图像。 基于积分图像提取所选特征。 对于每个弯曲图像的组合选定特征,计算提升的特征分数。 翘曲的图像根据提升的特征得分进行排名。 选择具有最大特征分数的预定数量的翘曲图像。 每个选择的变形图像与其相应的翘曲模板相关联。 相应的变形模板与存储的形状模型相关联。 基于形状模型的加权平均值来识别输入图像的形状。