摘要:
A method and system for fusion of multi-modal volumetric images is disclosed. A first image acquired using a first imaging modality is received. A second image acquired using a second imaging modality is received. A model and of a target anatomical structure and a transformation are jointly estimated from the first and second images. The model represents a model of the target anatomical structure in the first image and the transformation projects a model of the target anatomical structure in the second image to the model in the first image. The first and second images can be fused based on estimated transformation.
摘要:
A method and system for generating a patient specific anatomical heart model is disclosed. A sequence of volumetric image data, such as computed tomography (CT), echocardiography, or magnetic resonance (MR) image data of a patient's cardiac region is received. A multi-component patient specific 4D geometric model of the heart and aorta estimated from the sequence of volumetric cardiac imaging data. A patient specific 4D computational model based on one or more of personalized geometry, material properties, fluid boundary conditions, and flow velocity measurements in the 4D geometric model is generated. Patient specific material properties of the aortic wall are estimated using the 4D geometrical model and the 4D computational model. Fluid Structure Interaction (FSI) simulations are performed using the 4D computational model and estimated material properties of the aortic wall, and patient specific clinical parameters are extracted based on the FSI simulations. Disease progression modeling and risk stratification are performed based on the patient specific clinical parameters.
摘要:
A method and system for automated view planning for cardiac magnetic resonance imaging (MRI) acquisition is disclosed. The method and system automatically generate a full scan prescription using a single 3D MRI volume. The left ventricle (LV) is segmented in the 3D MRI volume. Cardiac landmarks are detected in the automatically prescribed slices. A full scan prescription, including a short axis stack and 2-chamber, 3-chamber, and 4-chamber views, is automatically generated based on cardiac anchors provided by the segmented left ventricle and the detected cardiac landmarks in the 3D MRI volume.
摘要:
A method and system for non-invasive patient-specific assessment of coronary artery disease is disclosed. An anatomical model of a coronary artery is generated from medical image data. A velocity of blood in the coronary artery is estimated based on a spatio-temporal representation of contrast agent propagation in the medical image data. Blood flow is simulated in the anatomical model of the coronary artery using a computational fluid dynamics (CFD) simulation using the estimated velocity of the blood in the coronary artery as a boundary condition.
摘要:
A method and system for providing medical decision support based on virtual organ models and learning based discriminative distance functions is disclosed. A patient-specific virtual organ model is generated from medical image data of a patient. One or more similar organ models to the patient-specific organ model are retrieved from a plurality of previously stored virtual organ models using a learned discriminative distance function. The patient-specific valve model can be classified into a first class or a second class based on the previously stored organ models determined to be similar to the patient-specific organ model.
摘要:
A method and system for modeling the pulmonary trunk in 4D image data, such as 4D CT data, and model-based percutaneous pulmonary valve implantation (PPVI) intervention is disclosed. A patient-specific dynamic pulmonary trunk data is generated from 4D image data of a patient. The patient is automatically classified as suitable for PPVI intervention or not suitable for PPVI intervention based on the generated patient-specific dynamic pulmonary trunk model.
摘要:
A detection framework that matches anatomical structures using appearance and shape is disclosed. A training set of images are used in which object shapes or structures are annotated in the images. A second training set of images represents negative examples for such shapes and structures, i.e., images containing no such objects or structures. A classification algorithm trained on the training sets is used to detect a structure at its location. The structure is matched to a counterpart in the training set that can provide details about the structure's shape and appearance.
摘要:
A method and system for automatic coronary stenosis detection in computed tomography (CT) data is disclosed. Coronary artery centerlines are obtained in an input cardiac CT volume. A trained classifier, such as a probabilistic boosting tree (PBT) classifier, is used to detect stenosis regions along the centerlines in the input cardiac CT volume. The classifier classifies each of the control points that define the coronary artery centerlines as a stenosis point or a non-stenosis point.
摘要:
A method and system for generating a patient specific anatomical heart model is disclosed. Volumetric image data, such as computed tomography (CT) or echocardiography image data, of a patient's cardiac region is received. Individual models for multiple heart components, such as the left ventricle (LV) endocardium, LV epicardium, right ventricle (RV), left atrium (LA), right atrium (RA), mitral valve, aortic valve, aorta, and pulmonary trunk, are estimated in said volumetric cardiac image data. A patient specific anatomical heart model is generated by integrating the individual models for each of the heart components.
摘要:
A system and method for identifying a shape of an anatomical structure in an input image is disclosed. An input image is received and warped using a set of warping templates resulting in a set of warped images. An integral image is calculated for each warped image. Selected features are extracted based on the integral image. A boosted feature score is calculated for the combined selected features for each warped image. The warped images are ranked based on the boosted feature scores. A predetermined number of warped images are selected that have the largest feature scores. Each selected warped image is associated with its corresponding warping template. The corresponding warping templates are associated with stored shape models. The shape of the input image is identified based on the weighted average of the shapes models.