摘要:
Methods and systems are provided for determining pacing parameters for an implantable medical device (IMD). The methods and systems provide electrodes in the right atrium (RA), right ventricle (RV) and left ventricle (LV). The methods and systems sense RV cardiac signals and LV cardiac signals at an RV electrode and an LV electrode, respectively, over multiple cardiac cycles, to collect global activation information. The methods and systems identify a T-wave in the LV cardiac signal. The methods and systems calculate a repolarization index based at least in part on a timing of the T-wave identified in the LV cardiac signal. The methods and systems set at least one pacing parameter based on the repolarization index, wherein the at least one pacing parameter that is set represents at least one of an AV delay, an inter-ventricular interval and an intra-ventricular interval. Optionally, the methods and systems may deliver an RV pacing stimulus at the RV electrode such that the LV cardiac signal sensed thereafter includes the RV pacing stimulus followed by a T-wave. The methods and systems determine a waveform metric such as at least one of a QT interval, T-wave duration, and T-wave amplitude, and utilize the waveform metric to determine as the repolarization index.
摘要:
CRT settings for an implantable medical device are determined by applying pacing pulses to heart chambers of a scheme of different combinations of interchamber delays. A respective width parameter value representing an R or P wave width is determined for each such delay combination based on an ECG representing signal and the width parameter values are employed to estimate a parametric model defining the width parameter as a function of interchamber delays. Candidate interchamber delays that minimize the width parameter are determined from the parametric model and employed to determine optimal CRT settings. The technique provides an efficient way of finding optimal CRT settings when multiple pacing sites are available in a heart chamber.
摘要:
Provided herein are implantable systems, and methods for use therewith, for monitoring a patient's pre-ejection interval (PEI). A signal indicative of cardiac electrical activity and a signal indicative of changes in arterial blood volume are obtained. One or more predetermined features of the signal indicative of cardiac electrical activity and the signal indicative of changes in arterial blood volume are detected. The patient's PEI is determined by determining an interval between the predetermined feature of the signal indicative of cardiac electrical activity and the predetermined feature of the signal indicative of changes in arterial blood volume.
摘要:
Implanted systems and methods for monitoring a patient's arterial stiffness are provided. An implanted sensor is used to produce a signal indicative of changes in arterial blood volume for a plurality of beats of the patient's heart. A pulse duration metric is determined for each of a plurality of pulses of the signal, wherein each pulse of the signal corresponds to a beat of the patient's heart. Arterial stiffness is monitored based on the determined pulse duration metric for the plurality of pulses of the signal. This can include monitoring arterial stiffness based on a dispersion of the pulse duration metric and/or an average of the pulse duration metric.
摘要:
A computer-implemented method for pre-processing image data of a three-dimensional volume includes providing the image data of a vessel, applying a super-sampling filter to the image data to generate super-sampled image data having an increased resolution as compared to the image data, applying an unsharp masking filter to the super-sampled image data for increasing contrast of an edge of the vessel, applying a de-noising filer for removing noise surrounding the edge after applying the unsharp masking filter, and storing the image data after applying the de-noising filter thereto.
摘要:
An exemplary method includes providing a mechanical activation time (MA time) for a myocardial location, the location defined at least in part by an electrode and the mechanical activation time determined at least in part by movement of the electrode; providing an electrical activation time (EA time) for the myocardial location; and determining an electromechanical delay (EMD) for the myocardial location based on the difference between the mechanical activation time (MA time) and the electrical activation time (EA time).