Abstract:
A method for obtaining data including scanning an object using a multi-energy computed tomography (MECT) system to obtain data to generate an anatomical image, and decomposing the obtained data to generate a first density image representative of bone material and a second density image representative of soft-tissue. The method further includes segmenting at least one of the first density image and the second density image, and volume rendering the second density image.
Abstract:
Certain embodiments of the present invention provide a system and method for displaying a set of data with a virtually dissected anatomical structure. In an embodiment, the anatomical structure is a colon and various attributes of the colonic lumen are assigned a color. In an embodiment, a virtual dissection of the colon is created by mapping a three-dimensional data set to a two dimensional data set. A plurality of display index values are computed which correspond to the three-dimensional data set. Various colors are assigned to specific display index values. The three-dimensional display index values are mapped to a two-dimensional set of display index values. As directed by a user, various color cues may be displayed with the virtually dissected lumen to provide color highlights to various aspects of the colon, such as highlighting shape, fluid, or fecal presence.
Abstract:
A technique is provided for analysis of image datasets acquired at different points in time. Computer aided algorithms are implemented for identification and classification of features of interest, and for comparison of such features which have evolved over time as represented by the image data. The algorithms may be specifically adapted to analyze temporal change images. Such algorithms may also be used to efficiently launch temporal change analysis only when particular features of interest are possibly present in the image data.
Abstract:
One or more techniques are provided for determining the overall motion of an organ of interest relative to a viewer or imager. Motion data is acquired for the organ of interest and/or for one or more proximate organs using sensor-based and/or image data-based techniques. The sensor-based techniques may include electrical and non-electrical techniques. The image data-based techniques may include both pre-acquisition and acquisition image data. The motion data for the organ of interest and proximate organs may be used to determine one or more quiescent periods corresponding to intervals of minimal motion for the organ of interest and the proximate organs. The one or more quiescent periods may be used to determine one or more gating points hat may be used retrospectively, i.e., after image acquisition. In addition, the one or more quiescent periods may be used to determine one or more motion compensation factors that may be used during processing and reconstruction of the acquired image data. The gating points and motion compensation factors may be used, separately or together, to reduce motion-related artifacts in the reconstructed images.
Abstract:
One or more techniques are provided for determining the overall motion of an organ of interest relative to a viewer or imager. Motion data is acquired for the organ of interest and/or for one or more proximate organs using sensor-based and/or image data-based techniques. The sensor-based techniques may include electrical and non-electrical techniques. The image data-based techniques may include both pre-acquisition and acquisition image data. The motion data for the organ of interest and proximate organs may be used to determine one or more quiescent periods corresponding to intervals of minimal motion for the organ of interest and the proximate organs. The one or more quiescent periods may be used to determine one or more gating points that may be used prospectively, i.e., during image acquisition, and retrospectively, i.e., after image acquisition. In addition, the one or more quiescent periods may be used to determine one or more motion compensation factors that may be used during processing and reconstruction of the acquired image data. The gating points and motion compensation factors may be used, separately or together, to reduce motion-related artifacts in the reconstructed images.
Abstract:
One or more techniques are provided for determining the overall motion of an organ of interest relative to a viewer or imager. Motion data is acquired for the organ of interest and/or for one or more proximate organs using sensor-based and/or image data-based techniques. The sensor-based techniques may include electrical and non-electrical techniques. The image data-based techniques may include both pre-acquisition and acquisition image data. The motion data for the organ of interest and proximate organs may be used to determine one or more quiescent periods corresponding to intervals of minimal motion for the organ of interest and the proximate organs. The one or more quiescent periods may be used to determine one or more gating points that may be used prospectively, i.e., during image acquisition. In addition, the one or more quiescent periods may be used to determine one or more motion compensation factors that may be used during processing and reconstruction of the acquired image data. The gating points and motion compensation factors may be used, separately or together, to reduce motion-related artifacts in the reconstructed images.
Abstract:
A technique is provided for improving digital images by analysis of the sampling rate of the image data. The optimal sampling rate is determined, such as based on the point-spread function of the imaging system, and is compared to the actual pixel sampling rate. Based upon the comparison, the image may be shrunk or sub-sampled to provide the optimal sampling rate that allows for optimal image filtering while accounting for inherent variations in spatial resolution of the images.
Abstract:
Certain embodiments of the present invention relate to a signal-to-noise ratio dependent image processing system. The method includes computing at least one SNR for at least one region of an image, determining a filter parameter for at least one region based on the at least one SNR, and processing at least one region of the image based on the filter parameter. In addition to SNR, a filter parameter may be determined using user preferences. The system includes a signal-to-noise ratio processor for determining a signal-to-noise ratio for an image. The system also includes a parameter selection unit for selecting at least one filter parameter based on the signal-to-noise ratio. The system further includes an image filter for filtering the image based on the filter parameter(s). In an embodiment, the SNR processor determines signal-to-noise ratio(s) for region(s) in the image.
Abstract:
Certain examples provide systems and methods for holistic viewing to provide comparative analysis and decision support in a drug development process. An example method includes accessing data related to drug development; pre-processing the data to prepare the data for measurement and analysis; and analyzing the data based on at least one of a plurality of different metrics. Each metric corresponds to a quantified variation between a first data set of results corresponding to a category in the drug development process. The first data set of results is provided for comparison with a second data set of results corresponding to at least one other category in the drug development process. At least some of the plurality of metrics are aggregated to generate a visual representation representing an integrated comparative visualization for the identified category.
Abstract:
Systems, methods and computer-readable storage mediums encoded with instructions for providing touch-driven controls in a clinical setting are provided. Certain embodiments provide a system that includes a clinical system and a customizable structured library of functions. The structured library can include a function associated with a clinical context. The function can be associated with a user input requiring the use of a touch driven interface with multi-touch gestures. The user input can provide for immediate execution of the associated function. The structured library can be loaded onto the clinical system as a driver such that the function is made available based on the associated clinical context. Certain embodiments can include a user interface configured to allow a user to add or delete a function or modify the user input associated with a function. Certain embodiments can include a user interface that provides instruction as to using a function.