摘要:
Clostridial toxin substrates comprising a lanthanide donor complex, an acceptor, and a Clostridial toxin recognition sequence including a cleavage site; methods for determining the activity of a Clostridial toxin from a test sample using such Clostridial toxin substrates; cell compositions comprising such Clostridial toxin substrates and a Clostridial toxin receptor; and methods for determining the activity of a Clostridial toxin from a test sample using such cell compositions.
摘要:
The present invention provides a method of determining clostridial toxin activity by (a) contacting with a sample a cell containing a clostridial toxin substrate that includes a donor fluorophore; an acceptor having an absorbance spectrum overlapping the emission spectrum of the donor fluorophore; and a clostridial toxin recognition sequence containing a cleavage site that intervenes between the donor fluorophore and the acceptor, where resonance energy transfer is exhibited between the donor fluorophore and the acceptor under the appropriate conditions; (b) exciting the donor fluorophore; and (c) determining resonance energy transfer of the contacted cell relative to a control cell, where a difference in resonance energy transfer of the contacted cell as compared to the control cell is indicative of clostridial toxin activity.
摘要:
The present invention provides clostridial toxin substrates useful in assaying for the protease activity of any clostridial toxin, including botulinum toxins of all serotypes as well as tetanus toxins. A clostridial toxin substrate of the invention contains a donor fluorophore; an acceptor having an absorbance spectrum overlapping the emission spectrum of the donor fluorophore; and a clostridial toxin recognition sequence that includes a cleavage site, where the cleavage site intervenes between the donor fluorophore and the acceptor and where, under the appropriate conditions, resonance energy transfer is exhibited between the donor fluorophore and the acceptor.
摘要:
The present invention provides clostridial toxin substrates useful in assaying for the protease activity of any clostridial toxin, including botulinum toxins of all serotypes as well as tetanus toxins. A clostridial toxin substrate of the invention contains a donor fluorophore; an acceptor having an absorbance spectrum overlapping the emission spectrum of the donor fluorophore; and a clostridial toxin recognition sequence that includes a cleavage site, where the cleavage site intervenes between the donor fluorophore and the acceptor and where, under the appropriate conditions, resonance energy transfer is exhibited between the donor fluorophore and the acceptor.
摘要:
The present invention provides a method of determining clostridial toxin activity by (a) contacting with a sample a cell containing a clostridial toxin substrate that includes a donor fluorophore; an acceptor having an absorbance spectrum overlapping the emission spectrum of the donor fluorophore; and a clostridial toxin recognition sequence containing a cleavage site that intervenes between the donor fluorophore and the acceptor, where resonance energy transfer is exhibited between the donor fluorophore and the acceptor under the appropriate conditions; (b) exciting the donor fluorophore; and (c) determining resonance energy transfer of the contacted cell relative to a control cell, where a difference in resonance energy transfer of the contacted cell as compared to the control cell is indicative of clostridial toxin activity.
摘要:
Compositions useful for detecting Clostridial toxin activity comprising a cell that comprises a membrane-associated Clostridial toxin substrate comprising a first member of a fluorescence resonance energy transfer pair; and a Clostridial toxin recognition sequence including a cleavage site; and a membrane-associated second member of the FRET pair and methods useful for determining Clostridial toxin activity using such Clostridial toxin substrates.
摘要:
Compositions useful for detecting Clostridial toxin activity comprising a cell that comprises a membrane-associated Clostridial toxin substrate comprising a first member of a fluorescence resonance energy transfer pair; and a Clostridial toxin recognition sequence including a cleavage site; and a membrane-associated second member of the FRET pair and methods useful for determining Clostridial toxin activity using such Clostridial toxin substrates.
摘要:
Compositions useful for detecting Clostridial toxin activity comprising a cell that contains an exogenous Clostridial toxin substrate which comprises a fluorescent member, a membrane targeting domain and a Clostridial toxin recognition sequence comprising a cleavage site, where the cleavage site intervenes between the fluorescent member and the membrane targeting domain; and methods useful for determining Clostridial toxin activity using such Clostridial toxin substrates.
摘要:
Natural and modified neurotoxins and isolated neurotoxin compositions are described. The neurotoxins may include one or more structural modifications, wherein the structural modification(s) alters the biological persistence, such as the biological half-life and/or a biological activity of the modified neurotoxin relative to an identical neurotoxin without the structural modification(s). In one embodiment, methods of making the modified neurotoxin include using recombinant techniques. In another embodiment, methods of using the modified neurotoxin to treat conditions include treating various disorders, neuromuscular aliments and pain.
摘要:
The present invention provides clostridial toxin substrates useful in assaying for the protease activity of any clostridial toxin, including botulinum toxins of all serotypes as well as tetanus toxins. A clostridial toxin substrate of the invention contains a donor fluorophore; an acceptor having an absorbance spectrum overlapping the emission spectrum of the donor fluorophore; and a clostridial toxin recognition sequence that includes a cleavage site, where the cleavage site intervenes between the donor fluorophore and the acceptor and where, under the appropriate conditions, resonance energy transfer is exhibited between the donor fluorophore and the acceptor.