摘要:
A method of forming a via structure is provided. In the method, a dielectric layer is formed on an anti-reflective coating (ARC) layer covering a first metal layer; and a transition metal layer is formed on the dielectric layer. An ultra-thin photoresist layer is formed on the transition metal layer, and the ultra-thin photoresist layer is patterned with short wavelength radiation to define a pattern for a via. The patterned ultra-thin photoresist layer is used as a mask during a first etch step to transfer the via pattern to the transition metal layer. The first etch step includes an etch chemistry that is selective to the transition metal layer over the ultra-thin photoresist layer and the dielectric layer. The transition metal layer is employed as a hard mask during a second etch step to form a contact hole corresponding to the via pattern by etching portions of the dielectric layer.
摘要:
In one embodiment, the present invention relates to a method of forming a metal line, involving the steps of providing a semiconductor substrate comprising a metal layer, an oxide layer over the metal layer, and a barrier metal layer over the oxide layer; depositing an ultra-thin photoresist over the barrier metal layer, the ultra-thin photoresist having a thickness less than about 2,000 Å; irradiating the ultra-thin photoresist with electromagnetic radiation having a wavelength of about 250 nm or less; developing the ultra-thin photoresist exposing a portion of the barrier metal layer; etching the exposed portion of the barrier metal layer exposing a portion of the oxide layer; etching the exposed portion of the oxide layer exposing a portion of the metal layer; and etching the exposed portion of the metal layer thereby forming the metal line.
摘要:
In one embodiment, the present invention relates to a dual damascene method involving the steps of providing a substrate having a first low k material layer; forming a first hard mask layer over the first low k material layer; patterning a first opening having a first width in the first hard mask layer using a first photoresist thereby exposing a portion of the first low k material layer; removing the first photoresist; depositing a second low k material layer over the patterned first hard mask layer and the exposed portion of the first low k material layer; forming a second hard mask layer over the second low k material layer; patterning a second opening having a width larger than the first width in the second hard mask layer using a second photoresist thereby exposing a portion of the second low k material layer; anisotropically etching the exposed portions of the first and second low k material layers; and removing the second photoresist, wherein and at least one of the first photoresist and the second photoresist have a thickness of about 1,500 Å or less.
摘要:
A system for regulating reticle temperature is provided. The system includes a reticle for use in a lithographic process and a chuck assembly for supporting the reticle. The chuck assembly includes: a backplate having front and back surfaces, the front surface engaging with a backside of the reticle; and a thermoelectric cooling system operatively coupled to the backplate for regulating temperature of at least a portion of the reticle via heat conduction through the backplate. The chuck assembly also includes a temperature sensing system coupled to the backplate for sensing temperature of at least a portion of the reticle via heat conduction through the backplate; and a heat sink operatively coupled to the thermoelectric cooling system. A voltage driver operatively is coupled to the thermoelectric cooling system, the voltage driver provides a bias voltage to drive the thermoelectric cooling system. A processor is operatively coupled to the voltage driver, the processor employing the voltage driver in controlling the thermoelectric cooling system.