摘要:
Methods and apparatus are presented for acknowledging broadcast transmissions. An acknowledgment channel is designed for acknowledging the success or failure of a transmission on a dedicated channel and on a broadcast channel. Acknowledgments are generated based on whether a new orthogonal space is sent to a remote station or not. Moreover, an acknowledgment to the broadcast transmission is generated when an acknowledgment is needed for a dedicated transmission. The two acknowledgments are combined and sent to a base station.
摘要:
Transmissions on the dedicated channel are encoded using a set of paramaters that are picked from a large selection of potential parameters. If the remote station does not know the particular set of parameters that were used by a base station, then the remote station would have to attempt to decode the transmission using every set of parameters, until the transmission is decoded correctly. This is an inefficient methodology. Hence, transmission format information is typically transmitted on a broadcast channel so that a remote station could receive the transmission format information. However, the broadcast channel has reliability problems. New methods and apparatus are presented to allow a base station to determine an overlapping set of Walsh code sequences that can be used to send the transmission format information on the dedicated channel, rather than a broadcast channel. Using the overlapping set allows the remote station to decode the information.
摘要:
Embodiments disclosed herein address the need in the art for an extended acknowledgment/rate control channel. In one aspect, an acknowledgment command and a rate control command are combined to form a combined command. In another aspect, the combined command is generated in accordance with a constellation of points, each point corresponding to a pair consisting of a rate control command and an acknowledgment command. In yet another aspect, the points of the constellation are designed to provide the desired probability of error for the respective command pairs. In yet another aspect, a common rate control command is transmitted along with a combined or dedicated rate control command. Various other aspects are also presented. These aspects have the benefit of reduced overhead while providing acknowledgment and rate control to single remote stations and/or groups of remote stations.
摘要:
A method of wireless communication includes configuring a plurality of remote radio heads (RRHs) to prevent position location reference signal (PRS) transmissions on the same subframes where the macro eNodeB transmits PRS. The configured RRHs each have a same physical cell identity (PCI) as the macro eNodeB. The RRHs communicating in accordance with the configuration.
摘要:
Techniques for mitigating data loss during autonomous system information (SI) reading by a user equipment (UE) are described. For autonomous SI reading, the UE may autonomously determine when to read system information from neighbor cells and may not inform a serving cell. In one design, the UE may autonomously select a SI reading gap for reading system information from a neighbor cell. During the SI reading gap, the UE may suspend reception of downlink transmission from the serving cell, receive system information from the neighbor cell, and maintain capability to transmit on the uplink to the serving cell. In one design, the serving cell may determine SI reading gaps autonomously selected by the UE for reading system information from neighbor cells. The serving cell may communicate with the UE by accounting for the SI reading gaps of the UE, e.g., may suspend communication with the UE during the SI reading gaps.
摘要:
In wireless communications, adaptive gain control may be performed by scaling of signals before and after a transform. A received signal power may be non-causally scaled to a first level within a desired range before transforming the received signal. The scaled signal is transformed between a time domain to a frequency domain and then its power is again non-causally scaled based on the first level. A feed forward circuit may be used in the power scaling. Different portions of the signal may be power adjusted independently of other portions. The different portions may be separated on a per-channel basis. Power scaling may be done on a symbol-by-symbol basis.
摘要:
In a wireless network (100) with HSDPA-enabled user equipment devices (130), the base transceiver station (120) transmits to each HSDPA-enabled UE information regarding allocation of HSDPA codes and associated modulation techniques for other HSDPA-enabled UEs. Using this additional control information, each UE configures decision feedback filter of its equalizer to reduce inter-user interference. The additional control information may be transmitted in a packet (300) that includes a CRC portion (310) with the packet's CRC masked by a common ID, which is known to the HSDPA-enabled UEs. To reduce the number of bits needed to transmit the additional control information, the HSDPA codes used with a particular modulation technique are allocated consecutively. For each modulation technique, only the beginning code and the total number of codes need be known to the UEs. The number of codes used with each modulation technique may be allowed to change once in several TTIs.
摘要:
Embodiments disclosed herein relate to preamble configuration in wireless communication systems (e.g., UHDR-DO type systems). Disclosed embodiments disclose receiving a plurality of information bits, generating a plurality of preamble codewords based on a determined a set of monitored MAC_IDs, correlating the information bits with each of the plurality of preamble codewords, determining if a maximum correlation value exceeds a threshold, and transmitting at least one of the preamble codewords if the threshold is exceeded.
摘要:
A method of wireless communication includes configuring a plurality of remote radio heads (RRHs) to prevent position location reference signal (PRS) transmissions on the same subframes where the macro eNodeB transmits PRS. The configured RRHs each have a same physical cell identity (PCI) as the macro eNodeB. The RRHs communicating in accordance with the configuration.
摘要:
Embodiments disclosed herein address the need in the art for reduced overhead control with the ability to adjust transmission rates as necessary. In one aspect, a first signal indicates an acknowledgement of a decoded subpacket and whether or not a rate control command is generated, and a second signal conditionally indicates the rate control command when one is generated. In another aspect, a grant may be generated concurrently with the acknowledgement. In yet another aspect, a mobile station monitors the first signal, conditionally monitors the second signal as indicated by the first signal, and may monitor a third signal comprising a grant. In yet another aspect, one or more base stations transmit one or more of the various signals. Various other aspects are also presented. These aspects have the benefit of providing the flexibility of grant-based control while utilizing lower overhead when rate control commands are used, thus increasing system utilization, increasing capacity and throughput.