摘要:
A method to enhance coverage and/or throughput in a heterogeneous wireless network includes detecting interference between a neighboring cell and a serving cell. The method also includes cancelling the interference using an adaptive technique based on whether the interference has colliding Common Reference Signal (CRS) tones.
摘要:
Certain aspects of the disclosure propose parallel channel estimation and interference cancellation in a wireless communications system. For each common reference signal tone offset, interference cancellation and channel estimation may be performed independently. The proposed channel estimation method may increase performance of a system.
摘要:
Providing for improved tracking and correction of timing in wireless communications is disclosed herein. By way of example, a first algorithm can be employed to track timing of a wireless signal, based on one dimension of the signal. Additionally, a second algorithm based on a different dimension of the signal can be employed to verify the timing and reduce errors in timing analysis. Various signal dimensions can be employed for the analysis, including cyclic prefix, frequency, channel impulse response, or the like, or a combination thereof. Additionally, different channels of the wireless signal can also be analyzed by the first algorithm and the second algorithm. Furthermore, the second algorithm can be selected to reduce deficiencies identified in the first algorithm, to improve overall timing analysis, reduce undetected timing errors or false errors, and improve timing correction.
摘要:
Obtaining a timing reference in wireless communication is facilitated when desiring to communicate with a weak serving base station (such as an evolved NodeB) in the presence of a stronger interfering base station. The user equipment (UE) may track a stronger interfering base station's timing, or the UE may track a timing that is derived by a composite power delay profile (PDP) from multiple base stations. The composite PDP may be constructed by adjusting individual base station PDPs according to a weighting scheme. The timing obtained in such a manner may be used for estimation of the channel of the interfering base station and cancelling interfering signals from the base station. It may also be used to estimate the channel of the serving base station after adding a backoff. The UE may track a stronger interfering base station's frequency, or the UE may track a composite frequency.
摘要:
Aspects describe channel estimation in an OFDM system. Baseline DFT-based channel estimation can be performed and scaling can be applied to mitigate distortion in the DFT-based estimations. In some aspects, baseline DFT-based channel estimation can be performed and tones for which DFT-based estimate is deemed unreliable can have MMSE based processing applied locally. If orthogonal sequence is deemed excessive, orthogonal sequence cancellation can be applied prior to the MMSE based processing.
摘要:
Certain aspects of the present disclosure provide for signaling to expanded capability UEs that may limit the interruption of legacy UEs. According to certain aspects, a base station (e.g., an eNB) may generate and transmit one or more signals containing information that is recognizable by at least one expanded capability UE and identified as invalid by at least one legacy UE. An expanded capability UE may receive such signaling and identifying supplemental information in the signaling, while a legacy UE may regard the signaling as invalid.
摘要:
Various aspects disclosed are directed to improvements to channel estimation through more efficient cancelation of neighboring common reference signals (CRS). Cancelation of CRS from other cells allows the user equipment (UE) a better opportunity for accurately detecting the reference signal of the current cell. Alternative aspects have a recursive element that uses previous estimates as the basis for the current channel estimate. The various aspects of the present disclosure generally have two alternative embodiments: (1) initializing the channel estimation for all cells with a previous channel estimate and cancellation of reference signals of non-target cells to accurately update channel estimate of the target cell; and (2) initializing the channel estimate for all cells with a previous channel estimate and cancelation of reference signals of all cells to accurately estimate residual channel estimate of the target cell and update its channel estimate.
摘要:
Interference on pilot signals and on data tones can be mismatched. Different types of interference estimates perform differently based on how the mismatch occurs. The resulting interference estimate may thus be inaccurate. Interference estimates based on pilot signals and also on data tones can both be evaluated for reliability. The more reliable of the two can then be selected. If the data tones estimate is selected, the estimate can be calculated from covariance matrices or from traffic-to-pilot ratios.
摘要:
Channel estimation is performed in a wireless network through cell/antenna pair ranking and iterative soft cancellation of pilot signals. Cell classification and ordering may be ranked and grouped for purposes of improving performance by dedicating hardware resources to higher priority received signals. A metric may be computed to rank the pairs. One such metric is reference signal (RS) power. Pairs may also be grouped into groups of pairs. Groups may be ordered by time-frequency resource and designated as serving-cell groups or non-serving cell groups. Higher priority pairs may be assigned a higher number of iterations. Higher priority groups may be processed first. Pairs which fall below a certain power threshold may be assigned no iterations. Iterations are distributed among hardware blocks to improve processing efficiency. Iteration numbers and hardware assignments may be modified to reach a desired complexity constraint.
摘要:
When enabled with common reference signal interference cancellation, a user equipment (UE) may still compute a channel state feedback value with consideration of any canceled interfering neighboring signals. When the neighboring cells are determined to be transmitting data during the time for which the channel state feedback value is being computed, the UE is able to derive the channel state feedback value considering those canceled interfering signals. The UE determines whether each neighboring cell is transmitting during the designated time either by obtaining signals that indicate the transmission schedule of the neighboring cells or by detecting the transmission schedule, such as based on the power class of the neighboring cells. If the UE determines that the neighboring cells are transmitting data during this time period, the UE will compute the channel state feedback value including consideration of the canceled interfering signals.