Abstract:
The disclosure is directed to a highly reflective multiband mirror that is reflective in the VIS-NIR_SWIR-MWIR-LWIR bands, the mirror being a complete thin film stack that consists of a plurality of layers on a selected substrate. In order from substrate to the final layer, the mirror consists of (a) substrate, (b) barrier layer, (c) first interface layer, (d) a reflective layer, (e) a second interface layer, (f) tuning layer(s) and (g) a protective layer. In some embodiments the tuning layer and the protective layer are combined into a single layer using a single coating material. The multiband mirror is more durable than existing mirrors on light weight metal substrates, for example 6061-Al, designed for similar applications. In each of the five layer types methods and materials are used to process each layer so as to achieve the desired layer characteristics, which aid to enhancing the durability performance of the stack.
Abstract:
A method for coating substrates is provided. The method includes diamond turning a substrate to a surface roughness of between about 60 Å and about 100 Å RMS, wherein the substrate is one of a metal and a metal alloy. The method further includes polishing the diamond turned surface of the substrate to a surface roughness of between about 10 Å and about 25 Å to form a polished substrate, heating the polished substrate, and ion bombarding the substrate with an inert gas. The method includes depositing a coating including at least one metallic layer on the ion bombarded surface of the substrate using low pressure magnetron sputtering, and polishing the coating to form a finished surface having a surface roughness of less than about 25 Å RMS using a glycol based colloidal solution.
Abstract:
A coated metal fluoride optic is provided. The coated metal fluoride optic includes an alkaline earth metal fluoride substrate and a coating disposed on at least one surface of the substrate. The coating includes an adhesion layer comprising a fluoride-containing material, a non-densified intermediate layer deposited on the adhesion layer, and a densified capping layer deposited on the intermediate layer.
Abstract:
The disclosure is directed to an element that is capable of acting as both an optical polarizer and an optical attenuator, thus integrating both functions into a single element. The element comprises a monolithic or one piece glass polarizer (herein also call the “substrate”), a multilayer “light attenuation or light attenuating” (“LA”) coating that has been optimized for use at selected wavelengths and attenuations deposited on at least one polarizer facial surface, and a multilayer anti-reflective (AR) coating on top of the LA coating. The disclosure is further directed to an integrated optical isolator/attenuator comprising a first and a second polarizing elements and a Faraday rotator for rotating light positioned after the first polarizing element and before the second polarizing element, the integrated optical isolator/attenuator both polarizing and attenuation a light beam from a light source.