Abstract:
Methods, systems, and devices are described. A system may include an optically transmissive substrate having a protective coating on a first surface and a blocking coating on a second surface that is opposite the first surface. The protective coating is configured to protect the optically transmissive substrate from at least ultraviolet laser energy, and the blocking coating has a first thickness that is less than about 280 nanometers and is adhered to a subset of the second surface. The system further includes a capping layer covering the blocking coating that is on the subset of the second surface and having a second thickness less than the first thickness of the blocking coating. Additionally, the system includes a sealing component positioned between the capping layer and a structure configured to support the optically transmissive substrate.
Abstract:
A coated metal fluoride optic is provided. The coated metal fluoride optic includes an alkaline earth metal fluoride substrate and a coating disposed on at least one surface of the substrate. The coating includes an adhesion layer comprising a fluoride-containing material, a non-densified intermediate layer deposited on the adhesion layer, and a densified capping layer deposited on the intermediate layer.
Abstract:
An optical assembly and a method for making the optical assembly. The optical assembly includes an optical element; an adhesion promoter; a blocking coating; a holder; and an adhesive configured to adhere the optical element to the holder. The blocking coating includes a light absorber that does not transmit light with wavelengths from greater than or equal to about 250 nm to less than or equal to about 400 nm; The light absorber is positioned such that light having a wavelength from greater than or equal to about 190 nm to less than or equal to about 500 nm is not incident to the adhesive. The adhesion promoter improves adhesion of the blocking coating to the optical element and reduces the likelihood of delamination during handling, operation, or clearing of the optical assembly.
Abstract:
A coated optical component includes an optical component and a conformal coating. The optical component is crystalline calcium fluoride and the conformal coating is an atomic layer deposition (ALD) coating in contact with a surface of the optical component. The ALD coating includes a metal fluoride ALD coating having a metal different from calcium. The ALD coating can include other metal oxide or metalloid oxide ALD coating layers. The method for making the coated optical component includes depositing an atomic layer deposition (ALD) coating on a surface of the optical component, where the ALD coating can be a metalloid oxide, a metal oxide, a metal fluoride having a metal that is different from calcium, or combinations of these. Sulfur hexafluoride is used as a fluorine source in the ALD process.
Abstract:
An optical assembly and a method for making the optical assembly. The optical assembly includes an optical element; an adhesion promoter; a blocking coating; a holder; and an adhesive configured to adhere the optical element to the holder. The blocking coating includes a light absorber that does not transmit light with wavelengths from greater than or equal to about 250 nm to less than or equal to about 400 nm; The light absorber is positioned such that light having a wavelength from greater than or equal to about 190 nm to less than or equal to about 500 nm is not incident to the adhesive. The adhesion promoter improves adhesion of the blocking coating to the optical element and reduces the likelihood of delamination during handling, operation, or clearing of the optical assembly.
Abstract:
A coated metal fluoride optic is provided. The coated metal fluoride optic includes an alkaline earth metal fluoride substrate and a coating disposed on at least one surface of the substrate. The coating includes an adhesion layer comprising a fluoride-containing material, a non-densified intermediate layer deposited on the adhesion layer, and a densified capping layer deposited on the intermediate layer.