Abstract:
An organic light emitting diode (OLED) display includes: a substrate; a first electrode on the substrate; a first emission layer on the first electrode; a second emission layer on the first emission layer; a second electrode on the second emission layer; and a light emitting assistance layer selectively positioned between the first emission layer and the second emission layer.
Abstract:
An organic light-emitting device including a substrate; a first electrode; a second electrode; an emission layer; a first electron transport layer; a second electron transport layer; a third electron transport layer; and a hole transport layer, wherein the first electron transporting material has an electron mobility smaller than an electron mobility of the second electron transporting material at an electric field of 800 to 1000 V/cm, the second electron transporting material and the third electron transporting material each independently have an electron mobility of about 10−8 to about 10 cm2/V·s at an electric field of 800 to 1000 V/cm, and the third electron transport layer has an electron injection barrier of about 0.2 eV or less at an interface between the third electron transport layer and the second electrode.
Abstract:
An analog-to-digital converter with a resolution booster is provided. The analog-to-digital converter may include a successive approximation analog-to-digital converter, a resolution booster, and an output combiner. The successive approximation analog-to-digital converter may be configured to convert an analog signal into digital data. The resolution booster may be selectively activated to enhance the resolution of the successive approximation analog-to-digital converter, and the output combiner may be configured to combine the respective outputs of the successive approximation analog-to-digital converter and the resolution booster.
Abstract:
Systems and methods may include an amplifier having at least a first input port, where the amplifier includes a first capacitance associated with the first input port; a first bias circuit, where the first bias circuit comprises a series connection of a first charging circuit and a first discharging circuit, wherein a first node between the first charging circuit and the first discharging circuit is connected to the first input port, wherein responsive to an RF input signal having at least a first predetermined level being received at the first input port, the first charging circuit charges the first capacitance associated with the first input port during a first portion of a cycle of the RF input signal, and discharges the first capacitance associated with the first input port during a second portion of the cycle, thereby controlling a DC bias voltage level available at the first input port.
Abstract:
An electrode, which includes a magnetic material to improve the flow of charges, and an organic light emitting device using the electrode. The electrode for the organic light emitting device has an excellent charge injection property, so that it is possible to improve the efficiency of light emission of the organic light emitting device.
Abstract:
An organic light emitting element includes a first electrode, a second electrode, and an organic layer. The organic layer includes a first emission layer between the first electrode and the second electrode, a second emission layer between the first emission layer and the second electrode, and an electron injection layer (EIL) between the first emission layer and the second emission layer, the electron injection layer (EIL) containing fullerene (C60).
Abstract:
Example driver circuits can utilize shared-charge recycling charge pump structures. In particular, an example shared-charge recycling process may be applied to a clock buffer and charge transfer cells of the charge pump in a driver circuit. An example recycling process may include recycling of shared charges between the capacitors/capacitances in the charge transfer cells. An example recycling process may use the charges in one or more capacitors to charge one or more other capacitors before the charges are wasted or otherwise discharged to ground. Such recycling may significantly reduce the power consumption of the charge pump while still providing a high output voltage level, according to an example embodiment of the invention.
Abstract:
As wireless communication technology evolves, various transceivers become integrated into a single system, which implements a seamless connection to search available frequency bands and to provide wireless connections regardless of their wireless standards. One of the key technologies for seamless implementation is an ultra-wideband local oscillator, which can overcome the restriction of limited tuning range in typical RF local oscillators. Many RF oscillators incorporate LC-tuned oscillators because of their good noise performance while their tuning range is limited by fixed inductance and varied capacitance. The planar inductor fabricated on the CMOS process occupies a large area as well. By replacing the planar inductor with the array of bondwires, and including switches to provide proper impedance for the circuit to generate negative impedance, the tuning range of a CMOS voltage-controlled oscillator (VCO) is extended more than 100%, which number can not be achieved in a convention VCO.
Abstract:
Embodiments of the invention may provide CMOS power amplifiers with power mode control to provide the desired power-added efficiency (PAE), idle current, output power, and Adjacent Channel Leakage Ratio (ACLR). For instance, there may be a multi-mode WCDMA CMOS RF power amplifier having high/medium/low output power modes aimed to achieve high PAE and low idle current in a portable wireless environment. According to an example embodiment, a CMOS RF power amplifier may provide a plurality of separate signal paths for purposes of supporting multi-power modes. For example, there may be a first signal path which supports a high-power mode, and a second path which is subsequently divided into two recursive signal paths or sub-paths to support respective medium and low-power modes. One of the three power modes may be selected or controlled using bias control switches in the first and second paths.
Abstract:
A testing device includes a signal sensing unit and a signal processing unit. The signal sensing unit generates a test output signal by sensing a signal from a device under test including a plurality of passive elements that are connected in parallel. The signal processing unit detects an open-type fault of the plurality of passive elements by measuring an impedance of the device under test based on element characteristic information of the plurality of passive elements.