摘要:
The present invention is a method of fabricating a toothed-shape capacitor node in a semiconductor DRAM circuit. This invention utilizes dot silicon as an etching mask. Next, the polysilicon is oxidized and removed to form trenches in the bottom storage of the capacitor. Thus, a toothed-shape capacitor node is formed in semiconductor circuit.
摘要:
A method of manufacturing a capacitor for use in semiconductor memories is disclosed herein. The present invention includes forming a silicon oxide layer as an etching mask to etch a polysilicon layer to form a bottom storage node of a capacitor. The silicon oxide layer is formed from the thermal annealing of oxygen doped dot silicon.
摘要:
A method for manufacturing a cylindrical stacked capacitor having a central spine for a DRAM using only one photo mask is provided. The invention uses sidewall spacers and selective etching techniques to form a low cost, simple to manufacture, high capacitance capacitor and DRAM cell. A substrate having source regions, drain regions and gate electrode structures is provided. An insulating layer with a contact opening is formed over the substrate surface. A first conductive layer and a first dielectric layer are formed over the insulating layer. The first dielectric layer and first conductive layer are etched forming a central spine over the contact opening. The etched first dielectric layer forms a dielectric cap over central spine. Dielectric spacers are formed on the sidewall of the central spine and the dielectric cap. The remaining portions of the first conductive layer are anisotropically etched using the dielectric spacers and the dielectric cap as a mask. Conductive spacers are formed on the sidewalls of the dielectric spacers. The dielectric cap and the dielectric spacers are selectively etched thereby forming a crown shaped storage node having a central spine. A capacitor dielectric layer and a top electrode are formed over the crown shaped storage node and the insulating layer forming a crown shaped capacitor.
摘要:
A method, and resultant structure, is described for fabricating a DRAM (Dynamic Random Access Memory) cell having a stack capacitor with a ladder storage node, connected to a MOS (Metal Oxide Semiconductor) transistor with source and drain regions, to form a DRAM cell. A bottom electrode is connected to and extends up from the source region of the transistor, and has a top surface with a central cavity, and side surfaces extending down from the top surface in a step-like manner. These step-like sides are formed by a repeated two-step process of removing a portion of the vertical walls of a photoresist mask and removing a portion of the top surface of a layer of polysilicon from which the bottom electrode is formed. There is a capacitor dielectric over the bottom electrode. A top electrode is formed over the capacitor dielectric.
摘要:
A method, and resultant structure, is described for fabricating a DRAM trench capacitor with a single pillar recessed below the level of the top surface of the silicon substrate in which it is formed. First and second insulating layers are formed over the silicon substrate, and patterned to form an opening to the silicon substrate. A portion of the silicon substrate is removed in the region defined by the opening, whereby a first trench is formed. Sidewall spacers are formed along the sides of the first trench from a third insulating layer. A first pillar is formed after depositing a first conductive layer between the sidewall spacers and over the trench and removing the first conductive layer except within the first trench. The sidewall spacers are removed. A portion of the silicon substrate in the first trench is removed that is not vertically masked by the pillar, and simultaneously a portion top of the pillar is removed, whereby a second trench and second pillar are formed at a greater depth in the silicon substrate. The remainder of the second insulating layer is also removed. A capacitor dielectric is formed in the second trench over the second pillar. A second conducting layer is formed over the dielectric layer and removed in the region outside of the trench to form the top capacitor electrode.
摘要:
A process for creating a polysilicon contact stud, to connect overlying metallizations, to underlying active device regions in a semiconductor substrate, has been developed. After filling a contact hole with insitu doped polysilicon, and overlying with a titanium film, an anneal cycle is performed to convert the unwanted portions of polysilicon to titanium silicide. The silicide is then selectively removed, leaving polysilicon only in the contact hole, thus resulting in the desired stud configuration.
摘要:
A method is described for fabricating a DRAM having a fin-type stacked capacitor. The method begins by forming a MOSFET source/drain and gate structure on a silicon substrate. The gate electrode is composed of a first polysilicon layer. A first insulator layer composed at least in part of silicon nitride is formed over the device and field oxide areas. The fin-type stacked capacitors are now formed by depositing a second polysilicon layer over the device and field oxide areas. Alternating layers of polysilicon and insulator are deposited over the device and field oxide areas with the first polysilicon layer being in contact to the device areas for electrical contact and the last polysilicon layer being the topmost of the alternating layers. The stack of alternating polysilicon and insulator layers are now patterned to form the basis of the stacked capacitors. The exposed edges of the insulator layers are controlably and laterally isotropic etched to increase the planned surface area of the capacitor by forming fin-type structures. A fourth polysilicon layer is deposited over the device and field oxide areas to complete the lower electrode of the stacked capacitor. A capacitor dielectric layer is formed over the lower electrode of the capacitor and the top polysilicon electrode is deposited thereover to complete the stacked capacitor.
摘要:
A method is described for fabricating a dynamic random access memory having a high capacitance stacked capacitor. Gate structures and associated source/drain structures are formed within the device areas. A first silicon oxide layer is formed over the device and field oxide areas. The stacked capacitors are now formed by first depositing a thick second polysilicon layer over the device and field oxide areas. Openings are formed to the desired source/drain structures by etching through the second oxide, second polysilicon, and first oxide layers. Cavities are formed between the first and second oxide layers by laterally etching the second polysilicon layer. A third polysilicon layer is deposited over the device and field oxide areas. The second and third polysilicon layers and the first and second oxide layers are patterned so as to have their remaining portions over the planned capacitor areas. The layers are etched leaving the third polysilicon layer as the bottom storage node electrode contacting the source/drain structures. The remaining second and third polysilicon layers form the storage node of the capacitor. A capacitor dielectric layer is formed over the bottom electrode polysilicon layer. A contact polysilicon layer is deposited as the top plate electrode and the contact polysilicon layer and the dielectric layer are patterned to complete the stacked capacitor.
摘要:
A DRAM having stacked high capacitance capacitors formed by depositing a thick undoped polysilicon layer over field oxide areas thereon, patterning the polysilicon layer so as to have portions over the planned stacked capacitor areas, forming a silicon oxide layer on the exposed surface of the polysilicon, removing the silicon oxide layer from horizontal surfaces of the polysilicon layer by anisotropic etching, removing the polysilicon layer by isotropic etching leaving vertical silicon oxide structures, and forming openings to desired source/drain structures of the DRAM using lithography and etching. A bottom electrode polysilicon layer is deposited over the device and field oxide areas to make contact to the source/drain structures. A capacitor dielectric layer is formed over the bottom electrode polysilicon layer. A contact polysilicon layer is deposited as the top storage node electrode and the contact polysilicon layer and the dielectric layers are patterned.
摘要:
An anchored conductive damascene buried in a multi-density dielectric layer and method for forming the same, the anchored conductive damascene including a dielectric layer with an opening extending through a thickness of the dielectric layer; wherein the dielectric layer comprises at least one relatively higher density portion and a relatively lower density portion, the relatively lower density portion forming a contiguous major portion of the dielectric layer; and, wherein the opening in the relatively lower density portion has a lateral dimension relatively larger compared to the relatively higher density portion to form anchoring steps.